

A Tech Authority, Inc. 3857 Schaefer Ave, Ste C Chino, CA. 91710 909-972-7520

From Page Hard

HEIDENHAIN

Exposed Linear Encoders

September 2008

Exposed Linear Encoders

Linear encoders measure the position of linear axes without additional mechanical transfer elements. This eliminates a number of potential error sources:

- Positioning error due to thermal behavior of the recirculating ball screw
- Reversal error
- Kinematic error through ball-screw pitch
 error

Linear encoders are therefore indispensable for machines that must fulfill high requirements for **positioning accuracy** and **machining speed**.

Exposed linear encoders are designed

for use on machines and installations that require especially high accuracy of the measured value. Typical applications include:

- Measuring and production equipment in the semiconductor industry
- PCB assembly machines
- Ultra-precision machines such as diamond lathes for optical components, facing lathes for magnetic storage disks, and grinding machines for ferrite components
- High-accuracy machine tools
- Measuring machines and comparators, measuring microscopes, and other precision measuring devices
- Direct drives

Mechanical design

Exposed linear encoders consist of a scale or scale tape and a scanning head that operate without mechanical contact. The scale of an exposed linear encoder is fastened directly to a mounting surface. The flatness of the mounting surface is therefore a prerequisite for high accuracy of the encoder.

Information on

- Angle encoders with integral bearing
- Angle encoders without integral bearing
- Rotary encoders
- Encoders for servo drives
- Linear encoders for numerically controlled machine tools
- Interface electronics
- HEIDENHAIN controls

is available on request as well as on the Internet at *www.heidenhain.de.*

This catalog supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the catalog edition valid when the contract is made.

Standards (ISO, EN, etc.) apply only where explicitly stated in the catalog.

Contents

	Exposed Linear Encoder	S	
	Selection Guide		
ical Characteristics			
	Measuring Principles	Measuring Standard	
		Incremental Measuring Method	
		Photoelectric Scanning	
	Measuring Accuracy		1
	Reliability		1
	Mechanical Design Types	and Mounting	1
	General Mechanical Info	rmation	1
fications			
For high accuracy	LIP 300 Series		1
	LIP 400 Series		2
	LIP 500 Series		2
	LIF 400 Series		2
For high traversing speed	LIDA 4x3 Series		2
	LIDA 4x5 Series		2
	LIDA 4x5 Series		20 30
For very limited installation space	LIDA 4x7 Series		3
For very limited installation space For two-coordinate measurement	LIDA 4x7 Series		3

HEIDENHAIN Measu	ring and Test Equipment	50
General Electrical Sp	ecifications	48
Cables and Connecti	ng Elements	46
Evaluation Electronic	S	45
	Electrical Connection	44
	Position Detection	43
	Limit Switches	42
	Incremental Signals	40
Interfaces	Incremental Signals 7 🗸 1 V _{PP}	38

Selection Guide

The **LIP** exposed linear encoders are characterized by very small measuring steps together with very high **accuracy** and **repeatability**. As the measuring standard they feature a DIADUR phase grating applied to a graduation carrier of glass ceramic or glass.

The **LIF** exposed linear encoders have a measuring standard on a glass substrate manufactured in the DIADUR or SUPRDAUR processes. They feature high **accuracy** and **repeatability,** and are especially easy to mount.

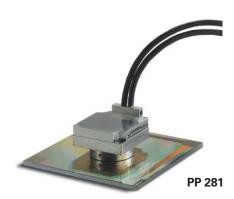
The **LIDA** exposed linear encoders are specially designed for **high traversing speeds** up to 10 m/s, and are particularly easy to mount with various mounting possibilities. Steel scale tapes, glass or glass ceramic are used as carriers for METALLUR graduations, depending on the respective encoder.

Signal period¹⁾ **Cross section** Accuracy grades LIP for very high accuracy 15 ± 0.5 µm 0.128 µm 55 (higher accuracy • Scale of glass ceramic or glass grades available • Interferential scanning principle for on request) small signal periods 33 2 µm ±1μm 5 co ± 0.5 μm LIP 4x1R (higher accuracy grades available on request) 5 ± 1 µm 4 µm 33 Ħr⊟ 20.5 LIF for high accuracy 3.05 4 µm $\pm 3 \,\mu m$ 9 • With PRECIMET adhesive film • Interferential scanning principle for small signal periods 16.5 • Limit switches and homing track LIDA with thermally adapted 3.05 ± 5 µm 20 µm ഉ (higher accuracy graduation carriers grades available • Linear coefficient of expansion on request) selectable via graduation carrier 12 • Limit switches 6 LIDA for high traversing speeds and ± 5 µm 20 µm 19 large measuring lengths • Steel scale tape drawn into aluminum extrusion or cemented to mounting 12 surface 2.7 Limit switches with LIDA 400 ± 15 µm 20 µm თ 12 2.6 200 µm ± 30 µm 2 12 0.2 ± 30 µm 200 µm 2 12 LIDA for very limited installation 20 µm 0.45 $\pm 5\,\mu m$ $^{\circ}$ space • Small scanning head • Simple installation 9 PP for two-coordinate measuring 3 ± 2 µm 4 µm 40 • Common scanning point for both coordinates • Interferential scanning principle for small signal periods 24

The **PP** two-coordinate encoders feature as measuring standard a planar phase-grating structure manufactured with the DIADUR process on a glass substrate. This makes it possible to measure **positions in a plane**.

¹⁾ Signal period of the sinusoidal signals. It is definitive for deviations within one signal period (see *Measuring Accuracy*).

Measuring lengths	Substrate and mounting	Interface	Model	Page
70 mm to 270 mm	Zerodur glass ceramic embedded in bolted-on Invar carrier		LIP 372	18
		∕~ 1 V _{PP}	LIP 382	
70 mm to 420 mm			LIP 471	20
		∕~ 1 V _{PP}	LIP 481	
70 mm to 1 440 mm	Glass scale fixed with bolted-on clamps		LIP 571	22
		~ 1 V _{PP}	LIP 581	
70 mm to 1 020 mm	Glass scale fixed with PRECIMET adhesive film		LIF 471	24
			LIF 481	
240 mm to 3040 mm	Glass or glass ceramic scale is cemented to the		LIDA 473	26
	mounting surface	∕~ 1 V _{PP}	LIDA 483	
 140 mm to 30040 mm	Steel scale tape drawn into aluminum extrusion and tensioned		LIDA 475	28
		∕~ 1 V _{PP}	LIDA 485	
240 mm to 6040 mm	Steel scale tape drawn into aluminum extrusion and fixed at center		LIDA 477	30
		∕~ 1 V _{PP}	LIDA 487	
Up to 10 000 mm	Steel scale tape drawn into aluminum extrusion and fixed at center		LIDA 277	32
		∕ 1 V _{PP}	LIDA 287	
Up to 10 000 mm	Steel scale tape cemented on mounting surface		LIDA 279	32
		∕~ 1 V _{PP}	LIDA 289	
70 mm to 1 020 mm	Glass scale fixed with PRECIMET adhesive film		LIDA 573	34
		∕~ 1 V _{PP}	LIDA 583	
Measuring range	Glass grid plate mounted with		PP 271	36
68 x 68 mm (other measuring ranges upon request)	full-surface adhesion	∕~ 1 V _{PP}	PP 281	



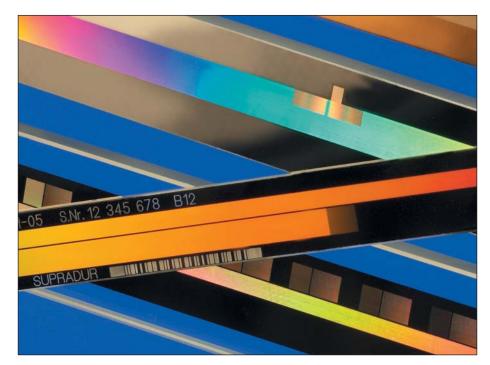
LIDA 485

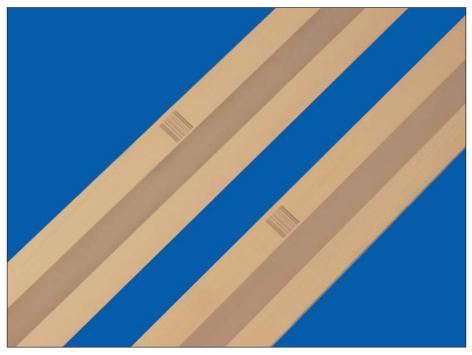
LIDA 583

Measuring Principles

Measuring Standard

HEIDENHAIN encoders with optical scanning incorporate measuring standards of periodic structures known as graduations. These graduations are applied to a carrier substrate of glass or steel. The scale substrate for large measuring lengths is a steel tape.


These precision graduations are manufactured in various photolithographic processes. Graduations are fabricated from:


- extremely hard chromium lines on glass,
- matte-etched lines on gold-plated steel tape, or
- three-dimensional structures on glass or steel substrates.

The photolithographic manufacturing processes developed by HEIDENHAIN produce grating periods of typically 40 μm to under 1 $\mu m.$

These processes permit very fine grating periods and are characterized by a high definition and homogeneity of the line edges. Together with the photoelectric scanning method, this high edge definition is a precondition for the high quality of the output signals.

The master graduations are manufactured by HEIDENHAIN on custom-built high-precision ruling machines.

Incremental Measuring Method

With the incremental measuring method,

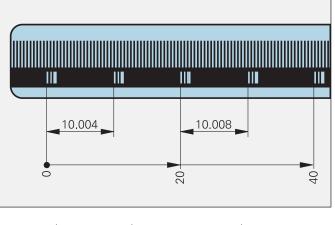
the graduation consists of a periodic grating structure. The position information is obtained **by counting** the individual increments (measuring steps) from some point of origin. Since an absolute reference is required to ascertain positions, the scales or scale tapes are provided with an additional track that bears a **reference mark**. The absolute position on the scale, established by the reference mark, is gated with exactly one measuring step. The reference mark must therefore be scanned to establish an absolute reference or to find the last selected datum.

In some cases this may necessitate machine movement over large lengths of the measuring range. To speed and simplify such "reference runs," many encoders feature **distance-coded reference marks**—multiple reference marks that are individually spaced according to a mathematical algorithm. The subsequent electronics find the absolute reference after traversing two successive reference marks—only a few millimeters traverse (see table).

Encoders with distance-coded reference marks are identified with a "C" behind the model designation (e.g. LIP 581 C).

With distance-coded reference marks, the **absolute reference** is calculated by counting the signal periods between two reference marks and using the following formula:

$P_1 = (abs B-sgn B-1) \times \frac{N}{2} + (sgn B-sgn D) \times \frac{abs M_{RR}}{2}$


where:

 $B = 2 \times M_{RR} - N$

and:

- P₁ = Position of the first traversed reference mark in signal periods
- abs = Absolute value
- sgn = Sign function ("+1" or "-1")
- M_{RR} = Number of signal periods between the traversed reference marks
- N = Nominal increment between two fixed reference marks in signal periods (see table below)
 - = Direction of traverse (+1 or -1) Traverse of scanning unit to the right (when properly installed) equals +1.

D

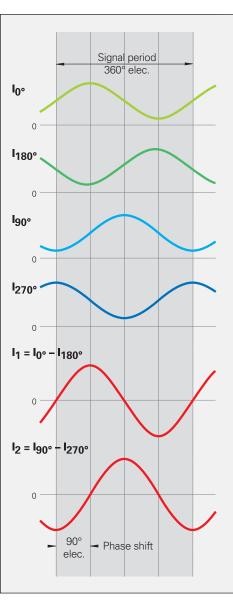
Schematic
representation of
an incremental
graduation with
distance-coded
reference marks
(LIP 5x1C as
example)

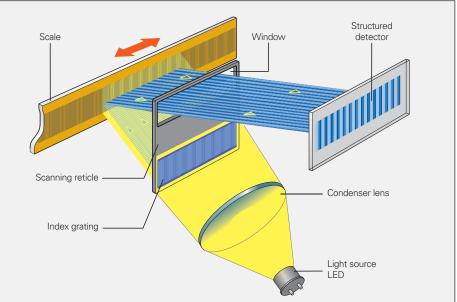
	Signal period	Nominal increment N in signal periods	Maximum traverse
LIP 5x1C	4 µm	5000	20 mm

Photoelectric Scanning

Most HEIDENHAIN encoders operate using the principle of photoelectric scanning. Photoelectric scanning of a measuring standard is contact-free, and as such free of wear. This method detects even very fine lines, no more than a few microns wide, and generates output signals with very small signal periods.

The finer the grating period of a measuring standard is, the greater the effect of diffraction on photoelectric scanning. HEIDENHAIN uses two scanning principles with linear encoders:

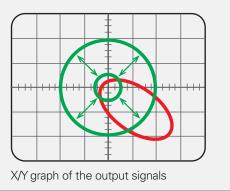

- The imaging scanning principle for grating periods from 10 µm to 200 µm.
- The **interferential scanning principle** for very fine graduations with grating periods of 4 µm and smaller.


Imaging scanning principle

To put it simply, the imaging scanning principle functions by means of projected-light signal generation: two scale gratings with equal grating periods are moved relative to each other—the scale and the scanning reticle. The carrier material of the scanning reticle is transparent, whereas the graduation on the measuring standard may be applied to a transparent or reflective surface.

When parallel light passes through a grating, light and dark surfaces are projected at a certain distance. An index grating with the same grating period is located here. When the two gratings move in relation to each other, the incident light is modulated: if the gaps are aligned, light passes through. If the lines of one grating coincide with the gaps of the other, no light passes through. Photovoltaic cells convert these variations in light intensity into electrical signals. The specially structured grating of the scanning reticle filters the light current to generate nearly sinusoidal output signals. The smaller the period of the grating structure is, the closer and more tightly toleranced the gap must be between the scanning reticle and scale. Practical mounting tolerances for encoders with the imaging scanning principle are achieved with grating periods of 10 µm and larger.

LIDA linear encoders operate according to the imaging scanning principle.



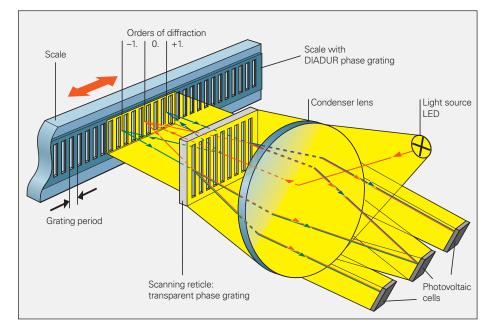
Photoelectric scanning in accordance with the imaging scanning principle with steel scale and single-field scanning (LIDA 400)

The sensor generates four nearly sinusoidal current signals (I_{0° , I_{90° , I_{180° and I_{270°), electrically phase-shifted to each other by 90°. These scanning signals do not at first lie symmetrically about the zero line. For this reason the photovoltaic cells are connected in a push-pull circuit, producing two 90° phase-shifted output signals I_1 and I_2 in symmetry with respect to the zero line.

In the XY representation on an oscilloscope the signals form a Lissajous figure. Ideal output signals appear as a concentric inner circle. Deviations in the circular form and position are caused by position error within one signal period (see *Measuring Accuracy*) and therefore go directly into the result of measurement. The size of the circle, which corresponds with the amplitude of the output signal, can vary within certain limits without influencing the measuring accuracy.

Interferential scanning principle

The interferential scanning principle exploits the diffraction and interference of light on a fine graduation to produce signals used to measure displacement.


A step grating is used as the measuring standard: reflective lines 0.2 µm high are applied to a flat, reflective surface. In front of that is the scanning reticle—a transparent phase grating with the same grating period as the scale.

When a light wave passes through the scanning reticle, it is diffracted into three partial waves of the orders –1, 0, and +1, with approximately equal luminous intensity. The waves are diffracted by the scale such that most of the luminous intensity is found in the reflected diffraction orders +1 and –1. These partial waves meet again at the phase grating of the scanning reticle where they are diffracted again and interfere. This produces essentially three waves that leave the scanning reticle at different angles. Photovoltaic cells convert this alternating light intensity into electrical signals.

A relative motion of the scanning reticle to the scale causes the diffracted wave fronts to undergo a phase shift: when the grating moves by one period, the wave front of the first order is displaced by one wavelength in the positive direction, and the wavelength of diffraction order –1 is displaced by one wavelength in the negative direction. Since the two waves interfere with each other when exiting the grating, the waves are shifted relative to each other by two wavelengths. This results in two signal periods from the relative motion of just one grating period.

Interferential encoders function with grating periods of, for example, 8 μ m, 4 μ m and finer. Their scanning signals are largely free of harmonics and can be highly interpolated. These encoders are therefore especially suited for high resolution and high accuracy. Even so, their generous mounting tolerances permit installation in a wide range of applications.

LIP and LIF linear encoders and the **PP** two-coordinate encoders operate according to the interferential scanning principle.

Photoelectric scanning in accordance with the interferential scanning principle and single-field scanning

Measuring Accuracy

The accuracy of linear measurement is mainly determined by:

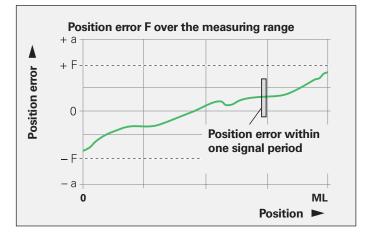
- The quality of the graduation
- The quality of the scanning process
- The quality of the signal processing electronics
- The error from the scale guideway relative to the scanning unit

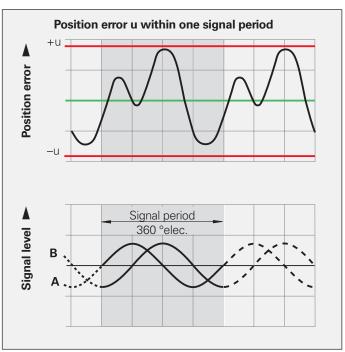
A distinction is made between position error over relatively large paths of traverse—for example the entire measuring range—and that within one signal period.

Position error over measuring length

The accuracy of exposed linear encoders is specified in accuracy grades, which are defined as follows:

The extreme values of the total error F of a position lie—with reference to their mean value—over any max. one-meter section of the measuring length within the accuracy grade ±a.


With exposed linear encoders, the above definition of the accuracy grade applies only to the scale. It is then called the scale accuracy.


Position error within one signal period

The position error within one signal period is determined by the quality of scanning and the signal period of the encoder. At any position over the entire measuring length of an exposed HEIDENHAIN linear encoders it does not exceed approx. $\pm 1\%$ of the signal period.

The smaller the signal period, the smaller the position error within one signal period. It is of critical importance both for accuracy of a positioning movement as well as for velocity control during the slow, even traverse of an axis.

	Signal period of scanning signals	Typical position error u within one signal period
LIP 3x2	0.128 µm	0.001 μm
LIP 4x1	2 µm	0.02 µm
LIP 5x1 LIF PP	4 μm	0.04 µm
LIDA 4xx LIDA 5xx	20 µm	0.2 µm
LIDA 2xx	200 µm	2 μm

Hersteller-Prüfzertifikat

Dieser Maßstab wurde unter den strengen HEIDENHAIN-Qualitätsnormen hergestellt und geprüft. Die Positionsabweichung liegt bei einer Bezugstemperatur 20 °C innerhalb der Genauigkeitsklass ± 1,0 µm.

Kalibrierzeichen: Kalibriemormale: Jod-stabilisierter He-Ne Laser 3659 PTB 02

Wasser-Tripelpunktzelle 66 PTB 05 Gallium-Schmelzpunktzelle 67 PTB 05 4945 DKD-K-02301 05-09 Barometer Luftfeuchtemessgerät 01758 DKD-K-00305 05-05

Relative Luftfeuchtigkeit: max. 50 %

HEIDENHAIN

Postfach 1260 D-83292 Traume 0 086681 31-0 ED 086691 3D

Messprotokoll

Die Messkurve zeigt Mittelwerte der Positions-abweichungen aus Vor- und Rückwärtsmessung.

Positionsabweichung F des Maßstabs:

F = Pos_N - Pos_M

 $(Pos_N = Messposition des Vergleichsnormals, Pos_M = Messposition des Maßstabs)$

Messschritt: 1000 µm

Beginn der Messlänge bei Messposition: 0 mm

Erster Referenzimpuls bei Messposition: 210 mm

Unsicherheit der Messund U = 0.010 µm + 0,130* 10⁻⁶* L

Manufacturer's Inspection Certificate

This scale has been manufactured and inspected in This scale has been manufactured and impleted in accordance with the stringent quality standards of HEIDENHAIN. The position error at a reference tempera-ture of 20 °C lies within the accuracy grade ± 1.0 µm.

Calibration reference: Calibration standards:

Iodine-stabilized He-Ne Laser 3659 PTB 02 66 PTB 05 67 PTB 05 4945 DKD-K-02301 05-09 01758 DKD-K-00305 05-05

Relative humidity; max, 50 %

Water triple point cell

Pressure gauge

Hygrometer

Gallium melting point cell

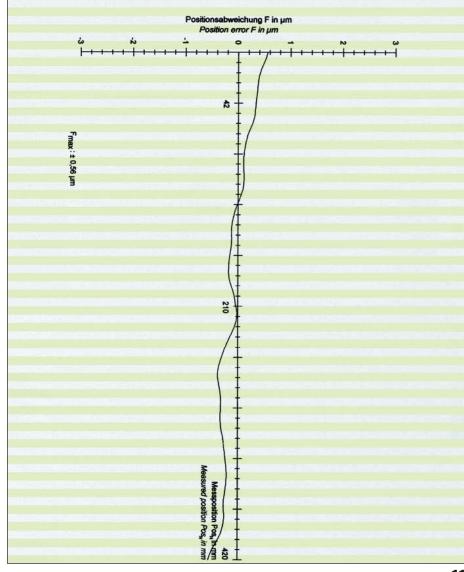
Prüfer/Inspected b Flatscher / 02.02.2007

Calibration chart

The error curve shows mean values of the position errors from measurements in forward and backward direction.

Position error F of the scale

 $F = Pos_N - Pos_M$


(Pos_N = measured position of the comparator standard, Pos_M = measured position of the scale

Measuring step: 1000 µm

Beginning of measuring length at measured position: 0 mm

First reference pulse at measured position: 210 mm

Uncertainty of measuremen U = measuring interval location

All HEIDENHAIN linear encoders are inspected before shipping for accuracy and proper function.

They are calibrated for accuracy during traverse in both directions. The number of measuring positions is selected to determine very exactly not only the long-range error, but also the position error within one signal period.

The Manufacturer's Inspection **Certificate** confirms the specified system accuracy of each encoder. The **calibration** standards ensure the traceability—as required by ISO 9001-to recognized national or international standards.

For the encoders of the LIP and PP series. a **calibration chart** documents the position error over the measuring range. It also shows the measuring step and the measuring uncertainty of the calibration measurement.

Temperature range

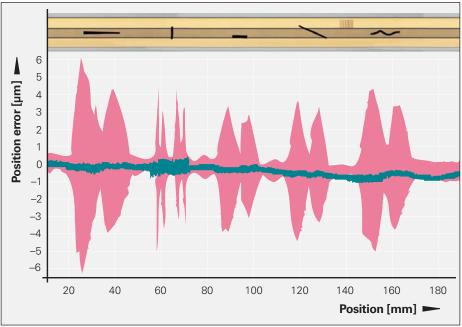
The length gauges are calibrated at a reference temperature of 20 °C. The system accuracy given in the calibration chart applies at this temperature. The operating temperature range indicates the ambient temperature limits between which the linear encoders will function properly.

The storage temperature range of -20 °C to 70 °C applies for the unit in its packaging.

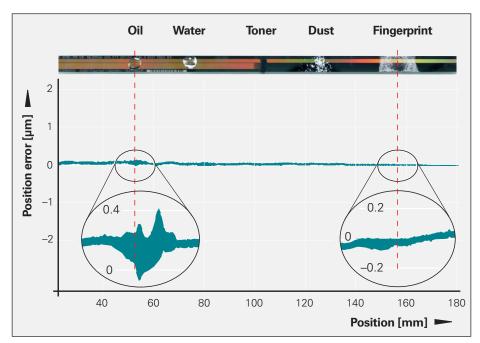
Poor mounting of linear encoders can aggravate the effect of guideway error on measuring accuracy. To keep the resulting Abbé error as small as possible, the scale or scale housing should be mounted at table height on the machine slide. It is important to ensure that the mounting surface is parallel to the machine guideway.

Reliability

Exposed linear encoders from HEIDENHAIN are optimized for use on fast, precise machines. In spite of the exposed mechanical design they are highly tolerant to contamination, ensure high long-term stability, and are fast and simple to mount.



Both the high quality of the grating and the scanning method are responsible for the accuracy and reliability of linear encoders. Exposed linear encoders from HEIDENHAIN operate with **single-field scanning.** Only one scanning field is used to generate the scanning signals. Unlike four-field scanning, with single-field scanning, local contamination on the measuring standard (e.g., fingerprints from mounting or oil accumulation from guideways) influences the light intensity of


Lower sensitivity to contamination

guideways) influences the light intensity of the signal components, and therefore the scanning signals, in equal measure. The output signals do change in their amplitude, but not in their offset and phase position. They remain highly interpolable, and the position error within one signal period remains small.

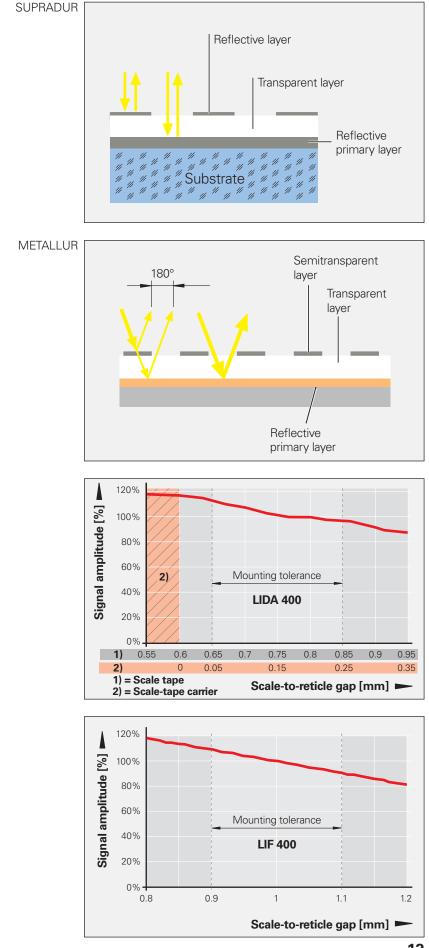
The **large scanning field** additionally reduces sensitivity to contamination. In many cases this can prevent encoder failure. This is particularly clear with the LIDA 400 and LIF 400, which in relation to the grating period have a very large scanning surface of 14.5 mm². Even with contamination from printer's ink, PCB dust, water or oil with 3 mm diameter, the encoders continue to provide high-quality signals. The position error remains far below the values specified for the accuracy grade of the scale.

Effects of contamination with four-field scanning (red) and single-field scanning (green)

Reaction of the LIF 400 to contamination

Durable measuring standards

By the nature of their design, the measuring standards of exposed linear encoders are less protected from their environment. HEIDENHAIN therefore always uses tough gratings manufactured in special processes.


In the DIADUR process, hard chrome structures are applied to a glass or steel carrier.

In the SUPRADUR process, a transparent layer is applied first over the reflective primary layer. An extremely thin, hard chrome laver is applied to produce an optically three-dimensional phase grating. Graduations that use the imaging scanning principle are produced according to the METALLUR procedure, and have a very similar structure. A reflective gold layer is covered with a thin layer of glass. On this layer are lines of chromium only several nanometers thick, which are semitransparent and act like absorbers. Measuring standards with SUPRADUR or METALLUR graduations have proven to be particularly robust and insensitive to contamination because the low height of the structure leaves practically no surface for dust, dirt or water particles to accumulate.

Application-oriented mounting tolerances

Very small signal periods usually come with very narrow mounting tolerances for the gap between the scanning head and scale tape. This is the result of diffraction caused by the grating structures. It can lead to a signal attenuation of 50% with a gap change of only ± 0.1 mm. Thanks to the interferential scanning principle and innovative index gratings in encoders with the imaging scanning principle it has become possible to provide ample mounting tolerances in spite of the small signal periods.

The mounting tolerances of exposed linear encoders from HEIDENHAIN have only a slight influence on the output signals. In particular the specified gap tolerance between the scale and scanning head (scanning gap) causes only negligible change in the signal amplitude. This behavior is substantially responsible for the high reliability of exposed linear encoders from HEIDENHAIN. The two diagrams illustrate the correlation between the scanning gap and signal amplitude for the encoders of the LIDA 400 and LIF 400 series.

Mechanical Design Types and Mounting Linear Scales

Exposed linear encoders consist of two components: the scanning head and the scale or scale tape. They are positioned to each other solely by the machine guideway. For this reason the machine must be designed from the very beginning to meet the following prerequisites:

- The machine guideway must be designed so that the **tolerances** in the mounting space for the encoder are met (see *Specifications*).
- The bearing surface of the scale must meet requirements for **evenness**.
- To facilitate adjustment of the scanning head to the scale, it should be fastened with a **bracket**.

Scale versions

HEIDENHAIN provides the appropriate scale version for the application and accuracy requirements at hand.

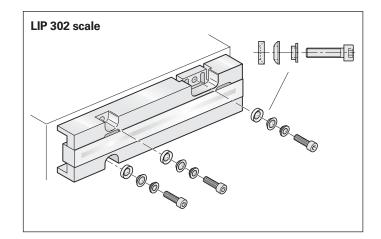
LIP 300 series

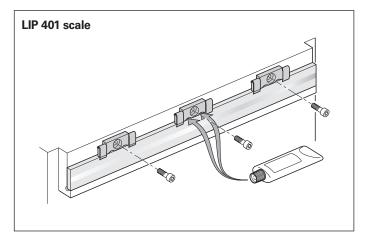
High-accuracy LIP 300 scales feature a graduation substrate of Zerodur, which is cemented in the thermal stress-free zone of a steel carrier. The steel carrier is fixed with screws onto the bearing surface. Flexible fastening elements ensure reproducible thermal behavior.

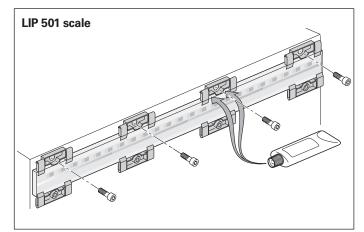
LIP 400 and LIP 500 series

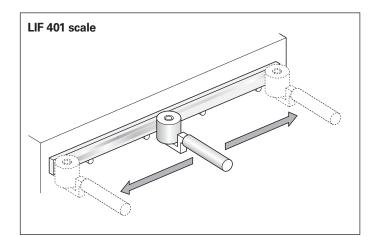
The graduation carriers of Zerodur or glass are fastened onto the bearing surface with clamps and additionally secured with silicone adhesive. The thermal zero point is fixed with epoxy adhesive.

Accessories


Fixing clamps	ID 270711-04
Silicone adhesive	ID 200417-02
Epoxy adhesive	ID 200409-01


LIF 400 series LIDA 4x3 series LIDA 500 series


The graduation carriers of glass are glued directly to the bearing surface with PRECIMET adhesive film, and pressure is evenly distributed with a roller.


Accessory Roller

ID 276885-01

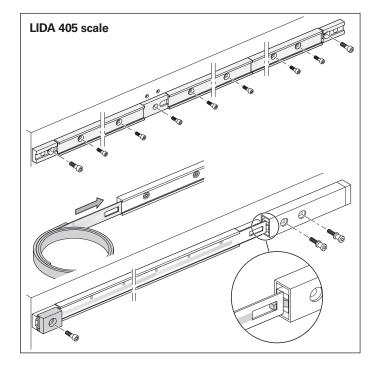
LIDA 4x5 series

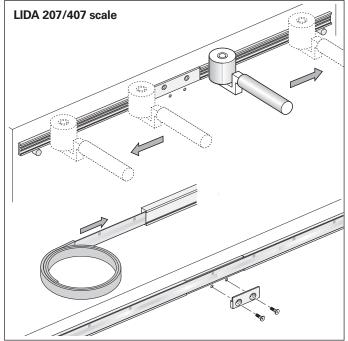
Linear encoders of the LIDA 4x5 series are specially designed for large measuring lengths. They are mounted with scale carrier sections screwed onto the bearing surface or with PRECIMET adhesive film. Then the one-piece steel scale tape is pulled into the carrier, **tensioned**, and **fixed at its ends** to the machine bed. The LIDA 405 therefore shares the thermal behavior of its mounting surface.

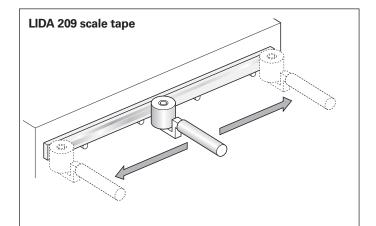
LIDA 2x7 series LIDA 4x7 series

Encoders of the LIDA 2x7 and LIDA 4x7 series are also designed for large measuring lengths. The scale carrier sections are fixed to the bearing surface with PRECIMET adhesive mounting film; the one-piece scale tape is pulled in and fixed at its **midpoint** to the machine bed. This mounting method allows the scale to expand freely at both ends and ensures a defined thermal behavior.

Accessory for LIDA 4x7 Mounting aid


ID 373990-01




LIDA 2x9 series

The steel scale tape of the graduation is glued directly to the mounting surface with PRECIMET adhesive film, and pressure is evenly distributed with a roller. A ridge or aligning rail 3 mm high is to be used for horizontal alignment of the scale tape.

Accessory for versions with PRECIMET Roller ID 276885-01

Mechanical Design Types and Mounting Scanning Heads

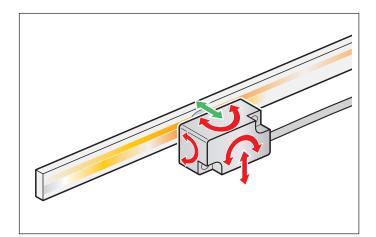
Because exposed linear encoders are assembled on the machine, they must be precisely adjusted after mounting. This adjustment determines the final accuracy of the encoder. It is therefore advisable to design the machine for simplest and most practical adjustment as well as to ensure the most stable possible construction.

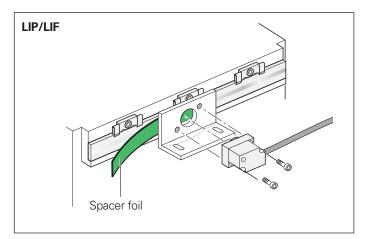
For exact alignment of the scanning head to the scale, it must be adjustable in five axes (see illustration). Because the paths of adjustment are very small, it is generally sufficient to provide oblong holes in an angle bracket.

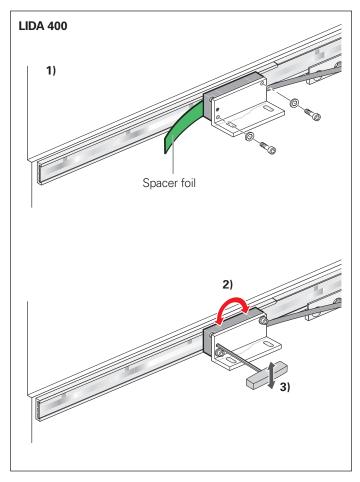
Mounting of LIP/LIF

The scanning head features a centering collar that allows it to be rotated in the location hole of the angle bracket and aligned parallel to the scale.

Mounting of LIDA


The scanning head is best mounted from behind on the mounting bracket. The LIDA 400 scanning head can be very precisely adjusted through a hole in the mounting bracket with the aid of a tool.


Adjustment


To simplify adjustment, HEIDENHAIN recommends the following procedure:

- 1) Set the scanning gap between the scale and scanning head using the spacer foil.
- 2) Adjust the incremental signals by rotating the scanning head.
- Adjust the reference mark signal through further, slight rotation of the scanning head (a tool can be used for the LIDA 400).

As adjustment aids, HEIDENHAIN offers the PWM 9 or PWT measuring and testing devices (see *HEIDENHAIN Measuring and Test Equipment*).

General Mechanical Information

Mounting

To simplify cable routing, the scanning head is usually screwed onto a stationary machine part, the scale onto the moving machine part.

The **mounting location** for the linear encoders should be carefully considered in order to ensure both optimum accuracy and the longest possible service life.

- The encoder should be mounted as closely as possible to the working plane to keep the Abbé error small.
- To function properly, linear encoders must not be continuously subjected to strong vibration. The more solid elements of the machine tool provide the best mounting surfaces in this respect; encoders should not be mounted on hollow parts or with adapter pieces.
- The linear encoders should be mounted away from sources of heat to avoid temperature influences.

Temperature range The operating temperature range

indicates the limits of ambient temperature within which the values given in the specifications for linear encoders are maintained.

The **storage temperature range** from –20 °C to +70 °C is valid when the unit remains in its packaging.

Thermal behavior

The thermal behavior of the linear encoder is an essential criterion for the working accuracy of the machine. As a general rule, the thermal behavior of the linear encoder should match that of the workpiece or measured object. During temperature changes, the linear encoder should expand or retract in a defined, reproducible manner.

The graduation carriers of HEIDENHAIN linear encoders (see *Specifications*) have differing coefficients of thermal expansion. This makes it possible to select the linear encoder with thermal behavior best suited to the application.

Protection (IEC 60529)

The scanning heads of the LIP, LIF and PP exposed linear encoders feature an IP 50 degree of protection, whereas the LIDA scanning heads have IP 40. The scales have no special protection. Protective measures must be taken if the possibility of contamination exists.

Acceleration

Linear encoders are subjected to various types of acceleration during operation and mounting.

- The indicated maximum values for vibration apply for frequencies of 55 to 2000 Hz (IEC 60068-2-6). Any acceleration exceeding permissible values, for example due to resonance depending on the application and mounting, might damage the encoder. Comprehensive tests of the entire system are required.
- The maximum permissible acceleration values (semi-sinusoidal shock) for shock and impact are valid for 11 ms (IEC 60068-2-27).

Under no circumstances should a hammer or similar implement be used to adjust or position the encoder.

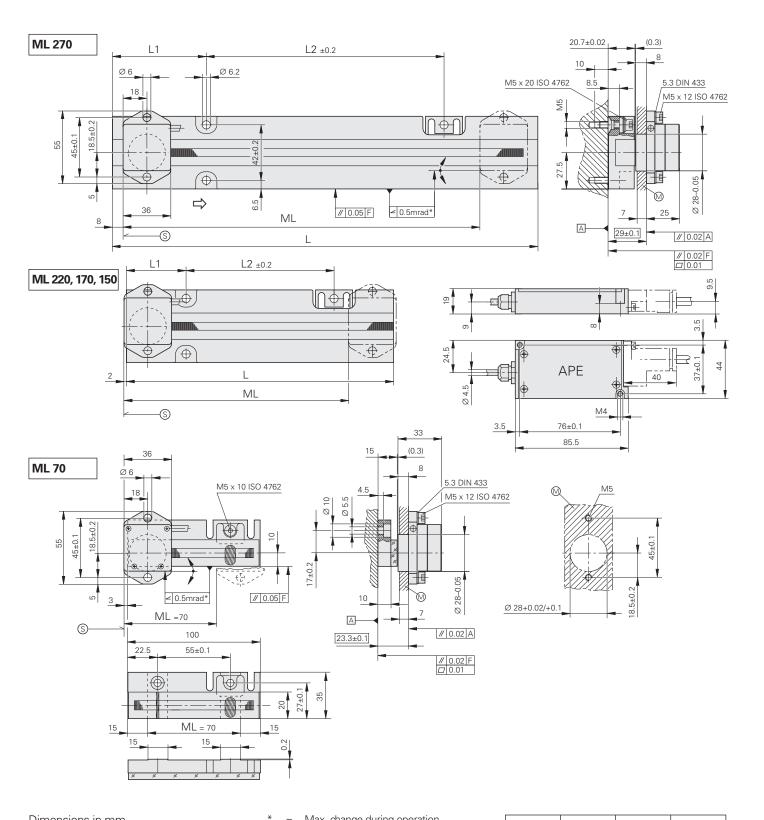
Expendable parts

In particular the following parts in encoders from HEIDENHAIN are subject to wear:

- LED light source
- Cables

System tests

Encoders from HEIDENHAIN are usually integrated as components in larger systems. Such applications require **comprehensive tests of the entire system** regardless of the specifications


of the encoder. The specifications given in the brochure apply to the specific encoder, not to the complete system. Any operation of the encoder outside of the specified range or for any other than the intended applications is at the user's own risk.

In safety-oriented systems, the higher-level system must verify the position value of the encoder after switch-on.

Mounting

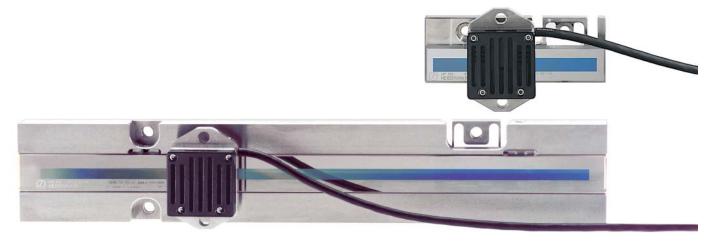
Work steps to be performed and dimensions to be maintained during mounting are specified solely in the mounting instructions supplied with the unit. All data in this catalog regarding mounting are therefore provisional and not binding; they do not become terms of a contract.

DIADUR[®], AURODUR[®], SUPRADUR[®], METALLUR[®] and PRECIMET[®] are registered trademarks of DR. JOHANNES HEIDENHAIN GmbH, Traunreut. Zerodur[®] and ROBAX[®] are registered trademarks of the Schott-Glaswerke, Mainz. LIP 300 Series Incremental linear encoders for very high accuracy For measuring steps to 0.001 µm (1 nm)

Dimensions in mm

- -
- Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Max. change during operation =


interface description

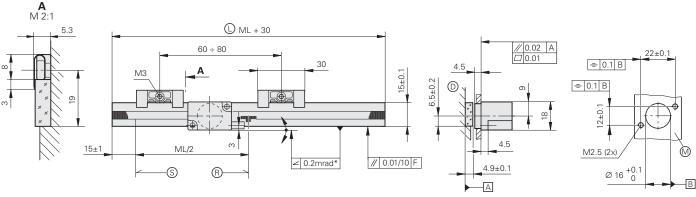
= Machine guideway

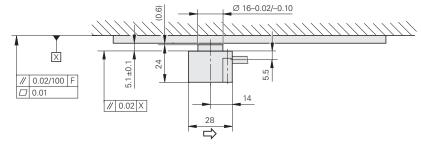
F

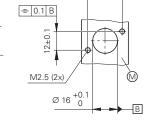
- S Beginning of measuring length (ML) = \mathbb{M}
- Mounting surface for scanning head = Direction of scanning head motion for ⇔ = output signals in accordance with

ML	L	L1	L2
150	182	40	102
170	202	45	112
220	252	56	140
270	322	71	180

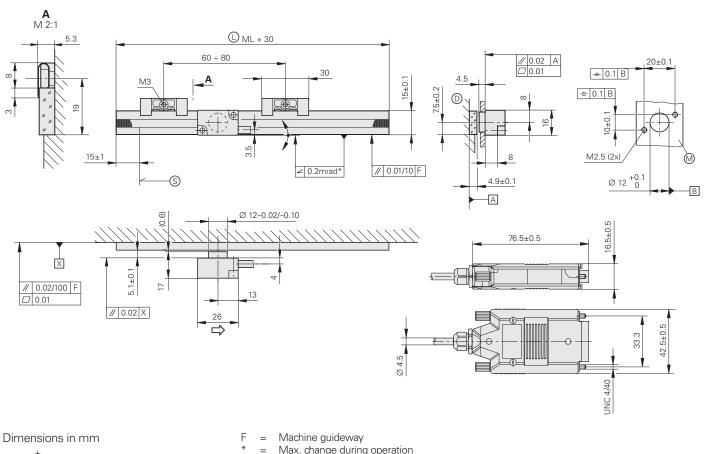
Specifications	LIP 382	LIP 372					
Measuring standard Expansion coefficient	DIADUR phase grating o $\alpha_{therm} \approx 0 \cdot 10^{-6} \text{ K}^{-1}$	DIADUR phase grating on Zerodur glass ceramic $x_{therm} \approx 0 \cdot 10^{-6} \text{ K}^{-1}$					
Accuracy grade	± 0.5 µm (higher accurac	e 0.5 μm (higher accuracy grades available on request)					
Measuring length ML* in mm	70 150 170 22	70 150 170 220 270					
Reference marks	None	None					
Incremental signals							
Grating period	0.512 µm						
Integrated interpolation Signal period	– 0.128 µm	32-fold 0.004 μm					
Cutoff frequency –3dB	≤ 1 MHz	IHz –					
Scanning frequency* Edge separation a	-	≤ 98 kHz ≥ 0.055 μs	≤ 49 kHz ≥ 0.130 μs	≤ 24.5 kHz ≥ 0.280 μs			
Traversing speed	≤ 7.6 m/min	≤ 0.75 m/min	≤ 0.38 m/min	≤ 0.19 m/min			
Power supply Power consumption	5 V ± 5% < 190 mA	5 V ± 5% < 250 mA (without load)					
Electrical connection	Cable 0.5 m to interface	electronics (APE), sep. ad	apter cable (1 m/3 m/6 m/s	9 m) connectable to APE			
Cable length ¹⁾	≤ 30 m						
Vibration 55 to 2000 Hz Shock 11 ms	\leq 4 m/s ² (IEC 60 068-2-4 \leq 50 m/s ² (IEC 60 068-2-2	6) 27)					
Operating temperature	0 °C to 40 °C						
Weight Scanning head Interface electronics Scale Connecting cable	150 g 100 g 260 g (ML 70 mm) 700 g (ML ≥ 150 mm) 38 g/m						


* Please indicate when ordering ¹⁾ With HEIDENHAIN cable


LIP 400 Series

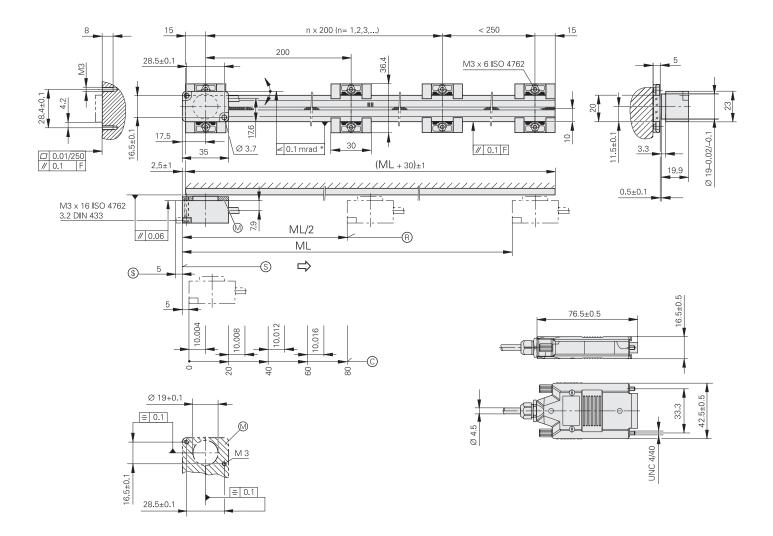

Incremental linear encoders for very high accuracy

- For limited installation space
- For measuring steps of 1 μm to 0.005 μm


LIP 471 R/LIP 481 R

Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- =
- Max. change during operation Reference-mark position on LIP 4x1 R ® = S
- Beginning of measuring length (ML) = Direction of scanning head motion for output signals in accordance with ⇒ =
 - interface description


Specifications	LIP 481	LIP 471					
Measuring standard* Expansion coefficient	DIADUR phase grating on Zerodur glass ceramic or glass $\alpha_{\text{therm}} \approx 0 \cdot 10^{-6} \text{ K}^{-1}$ (Zerodur glass ceramic) $\alpha_{\text{therm}} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$ (glass)						
Accuracy grade*	± 1 µm, ± 0.5	\pm 1 µm, \pm 0.5 µm (higher accuracy grades on request)					
Measuring length ML* in mm	70 120	70 120 170 220 270 320 370 420					
Reference marks* LIP 4x1 R LIP 4x1 A	One at midpo None	One at midpoint of measuring length None					
Incremental signals	∕~ 1 V _{PP}						
Grating period	4 µm						
Integrated interpolation* Signal period	– 2 μm	5-fold 10-fold 0.4 μm 0.2 μm					
Cutoff frequency –3dB	≥ 250 kHz	-					
Scanning frequency* Edge separation a	-	≤ 200 kHz ≥ 0.220 μs	≤ 100 kHz ≥ 0.465 μs	≤ 50 kHz ≥ 0.950 µs	≤ 100 kHz ≥ 0.220 µs	≤ 50 kHz ≥ 0.465 µs	≤ 25 kHz ≥ 0.950 μs
Traversing speed	≤ 30 m/min	≤ 24 m/min	≤ 12 m/min	≤ 6 m/min	≤ 12 m/min	≤ 6 m/min	≤ 3 m/min
Power supply Power consumption	5V ± 5% < 190 mA	5 V ± 5% < 200 mA (wi	thout load)			·	
Electrical connection	Cable 0.5 m v	with D-sub conn	nector (15-pin),	interface electi	ronics integrate	d in the conne	ctor
Cable length ¹⁾	≤ 30 m	≤ 30 m					
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2 (\text{II})$ $\leq 500 \text{ m/s}^2 (\text{II})$	EC 60068-2-6) EC 60068-2-27)					
Operating temperature	0 °C to 40 °C						
Weight Scanning head Connector Scale Connecting cable	50 g (LIP 4x1 140 g	5.6 g + 0.2 g/mm measuring length					

* Please indicate when ordering ¹⁾ With HEIDENHAIN cable

LIP 500 Series

Incremental linear encoders for very high accuracy

- For larger measuring lengths
- For measuring steps of 1 μm to 0.01 μm

Dimensions in mm

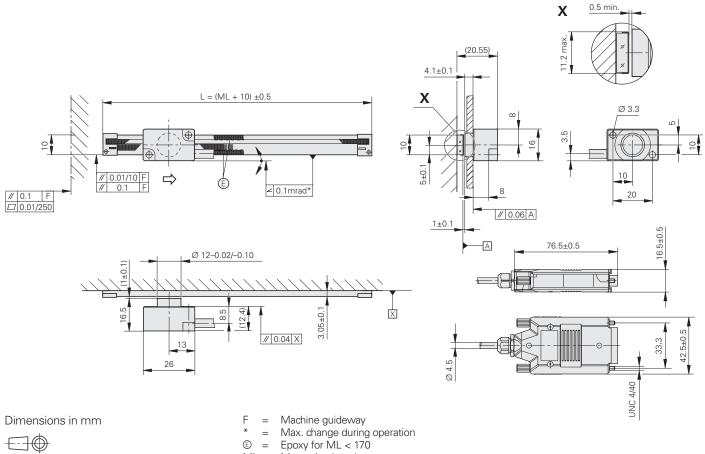
Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Machine guideway =

F

- * Max. change during operation =
- ß Reference-mark position on LIP 5x1 R =
- © S S Reference-mark position on LIP 5x1C =
- Beginning of measuring length (ML) =
- =
- Permissible overtravel Mounting surface for scanning head =
- ⇔ = Direction of scanning head motion for output signals in accordance with interface description

Specifications	LIP 581	LIP 571							
Measuring standard Expansion coefficient	DIADUR phas α _{therm} ≈ 8 · 10	DIADUR phase grating on glass $\alpha_{therm} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$							
Accuracy grade*	± 1 µm	±1μm							
Measuring length ML* in mm	70 120 720 770	170 220 820 870							
Reference marks* LIP 5x1 R LIP 5x1 C		One at midpoint of measuring length Distance-coded							
Incremental signals	∕~ 1 V _{PP}								
Grating period	8 µm								
Integrated interpolation* Signal period	– 4 µm	5-fold 10-fold 0.8 μm 0.4 μm							
Cutoff frequency –3dB	≥ 300 kHz	-							
Scanning frequency* Edge separation a	_	≤ 200 kHz ≥ 0.220 μs	≤ 100 kHz ≥ 0.465 μs	≤ 50 kHz ≥ 0.950 µs	≤ 100 kHz ≥ 0.220 µs	≤ 50 kHz ≥ 0.465 µs	≤ 25 kHz ≥ 0.950 µs		
Traversing speed	≤ 72 m/min	≤ 48 m/min	≤ 24 m/min	≤ 12 m/min	≤ 24 m/min	≤ 12 m/min	≤ 6 m/min		
Power supply Power consumption	5 V ± 5% < 175 mA	5 V ± 5% < 175 mA (wi	thout load)						
Electrical connection	Cable 0.5 m, integrated in (1 m, 2 m or 3 n connector	n with D-sub co	onnector (15-pi	n), interface ele	ectronics			
Cable length ¹⁾	≤ 30 m								
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2 (\text{II})$ $\leq 500 \text{ m/s}^2 (\text{II})$	EC 60068-2-6) EC 60068-2-27))						
Operating temperature	0 °C to 50 °C								
Weight Scanning head Connector Scale Connecting cable	140 g	25 g (without connecting cable) 140 g 7.5 g + 0.25 g/mm measuring length							


* Please indicate when ordering ¹⁾ With HEIDENHAIN cable

LIF 400 Series

Incremental linear encoders for simple mounting with PRECIMET adhesive film

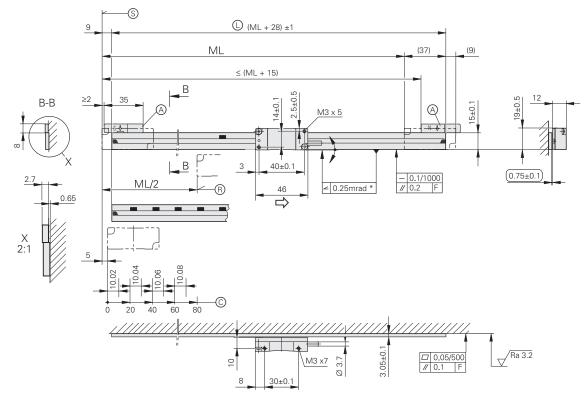
• For measuring steps of 1 μm to 0.1 μm

• Position detection through homing track and limit switches

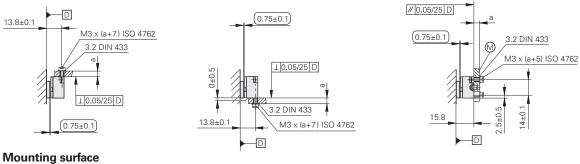
Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

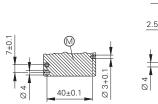
- ML = Measuring length ⇒ =
 - Direction of scanning head motion for output signals in accordance with interface description

Specifications	LIF 481	LIF 471							
Measuring standard Expansion coefficient	SUPRADUR pha α _{therm} ≈ 8 · 10 ⁻⁶	ase grating on gla K ⁻¹	SS						
Accuracy grade	± 3 µm								
Measuring length ML* in mm	70 120 720 770								
Reference marks	One at midpoint	One at midpoint of measuring length							
Incremental signals	∕~ 1 V _{PP}								
Grating period	8 µm								
Integrated interpolation* Signal period	– 4 μm	5-fold 0.8 µm	10-fold 0.4 μm	20-fold 0.2 μm	50-fold 0.08 µm	100-fold 0.04 µm			
Cutoff frequency –3dB –6dB	≥ 300 kHz ≥ 420 kHz	-							
Scanning frequency*	-	≤ 500 kHz ≤ 250 kHz ≤ 125 kHz	≤ 250 kHz ≤ 125 kHz ≤ 62.5 kHz	≤ 250 kHz ≤ 125 kHz ≤ 62.5 kHz	≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz			
Edge separation a ¹⁾	-	≥ 0.080 μs ≥ 0.175 μs ≥ 0.370 μs	≥ 0.080 μs ≥ 0.175 μs ≥ 0.370 μs	≥ 0.040 μs ≥ 0.080 μs ≥ 0.175 μs	≥ 0.040 µs ≥ 0.080 µs ≥ 0.175 µs	≥ 0.040 μs ≥ 0.080 μs ≥ 0.175 μs			
Traversing speed ¹⁾	72 m/min 100 m/min	≤ 120 m/min ≤ 60 m/min ≤ 30 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 24 m/min ≤ 12 m/min ≤ 6 m/min	≤ 12 m/min ≤ 6 m/min ≤ 3 m/min			
Position detection	Homing signal a	nd limit signal, TT	L output signals (\	without line drive	r)				
Power supply Power consumption	5 V ± 5% < 175 mA	5 V ± 5% < 180 mA (with	out load)						
Electrical connection*	Cable 0.5 m, 1m	n or 3 m with D-su	ıb connector (15-p	in), interface elec	tronics integrated	in the connector			
Cable length ²⁾	Incremental: ≤ 3	30 m, <i>homing, lin</i>	<i>nit:</i> ≤ 10 m						
Vibration 55 to 2000 Hz Shock 11 ms	\leq 200 m/s ² (IEC \leq 500 m/s ² (IEC	60068-2-6) 60068-2-27)							
Operating temperature	0 °C to 50 °C								
Weight Scanning head Connector Scale Connecting cable	140 g	9 g (without connecting cable) 140 g 0.8 g + 0.08 g/mm measuring length							


* Please indicate when ordering ¹⁾ At the corresponding cutoff or scanning frequency ²⁾ With HEIDENHAIN cable

LIDA 4x3 Series


Incremental linear encoders with measuring standard of glass ceramic or glass


For measuring steps of 1 µm to 0.1 µm •

- Measuring standard is fastened with adhesive to the mounting surface
- Limit switches

Possibilities for mounting the scanning head

Ø 2.9+0.1

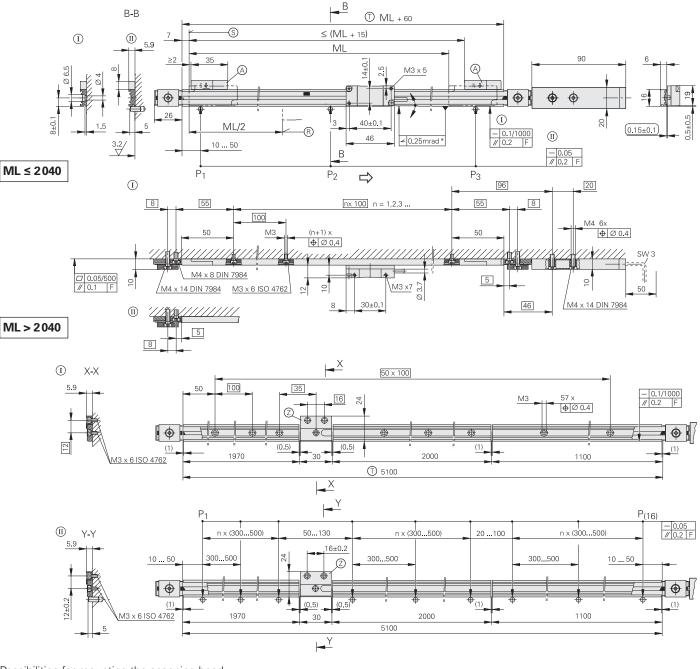
Dimensions in mm

-E-70 Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

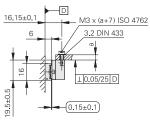
- = Machine guideway F
- Adjust or set) =
- Max. change during operation =
- = Reference mark position ®
- S = Beginning of measuring length (ML)
- \bigcirc = Selector magnet for limit switch
- \bigcirc = Scale length
- Image: Mounting surface for scanning head
- \Rightarrow = Direction of scanning head motion for output signals in accordance with interface description

C 104.48 007 0	10
CHEIDENHAN	Contract of the local division of the local
	A strangeners

Specifications	LIDA 483	LIDA 473				
Measuring standard Expansion coefficient*	METALLUR graduation on glass ceramic or glass $\alpha_{\text{therm}} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$ (glass) $\alpha_{\text{therm}} \approx 0 \cdot 10^{-6} \text{ K}^{-1}$ (ROBAX glass ceramic) $\alpha_{\text{therm}} = (0 \pm 0.1) \cdot 10^{-6} \text{ K}^{-1}$ (Zerodur glass ceramic)					
Accuracy grade	± 5 µm (higher accu	- 5 μm (higher accuracy grades available on request)				
Measuring length ML* in mm		240 340 440 640 840 1040 1240 1440 1640 1840 2040 2240 2440 2640 2840 3040 (ROBAX glass ceramic up to ML 1640)				
Reference marks* LIDA 4x3 LIDA 4x3 C	One at midpoint of measuring length Distance-coded upon request					
Incremental signals	\sim 1 V _{PP}					
Grating period	20 µm					
Integrated interpolation* Signal period	– 20 μm	m 5-fold 10-fold 2 µm			100-fold 0.2 μm	
Cutoff frequency –3dB	≥ 400 kHz	≥ 400 kHz –				
Scanning frequency*	_	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz		
Edge separation a ¹⁾	-	≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.080 μs ≥ 0.175 μs ≥ 0.370 μs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs		
Traversing speed ¹⁾	480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min ≤ 15 m/min ≤ 15 m/min ≤ 60 m/min ≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min					
Limit switches	L1/L2 with two different magnets; <i>output signals:</i> TTL (without line driver)					
Power supply Power consumption	5V ± 5% 5V ± 5% 5V ± 5% < 100 mA < 170 mA (without load) < 255 mA (without load)					
Electrical connection	Cable 3 m with D-sub connector (15-pin), interface electronics for LIDA 473 integrated in the connector					
Cable length ²⁾	≤ 20 m					
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2$ (IEC 60068-2-6) $\leq 500 \text{ m/s}^2$ (IEC 60068-2-27)					
Operating temperature	0 °C to 50 °C					
Weight Scanning head Connector Scale Connecting cable	20 g (without connecting cable) <i>LIDA 483:</i> 32 g, <i>LIDA 473:</i> 140 g 3 g + 0.1 g/mm measuring length 22 g/m					


* Please indicate when ordering

¹⁾ At the corresponding cutoff or scanning frequency


LIDA 4x5 Series

Incremental linear encoders for long measuring ranges up to 30 m

- For measuring steps of 1 µm to 0.1 µm •
- Large mounting tolerances
- Limit switches

Possibilities for mounting the scanning head

Dimensions in mm

 E^{-1} Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

 \bigcirc Scale carrier sections fixed with screws = Scale carrier sections fixed with =

(0.15±0.1)

10.05/25 D

3.2 DIN 433

/ M3 x (a+7) ISO 4762

- PRECIMET
- Machine guideway =
- Adjust or set) =

F

C

- Max. change during operation = Gauging points for alignment
- Ρ = ®
 - Reference mark position =

D

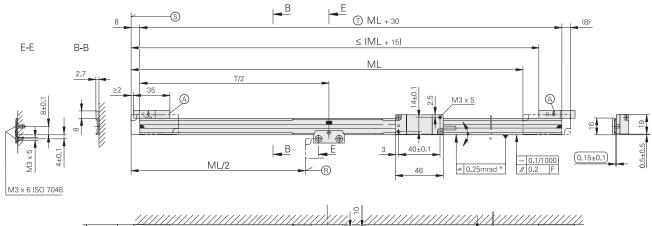
0.5±0.5

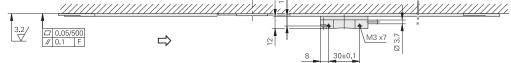
16.15±0.1

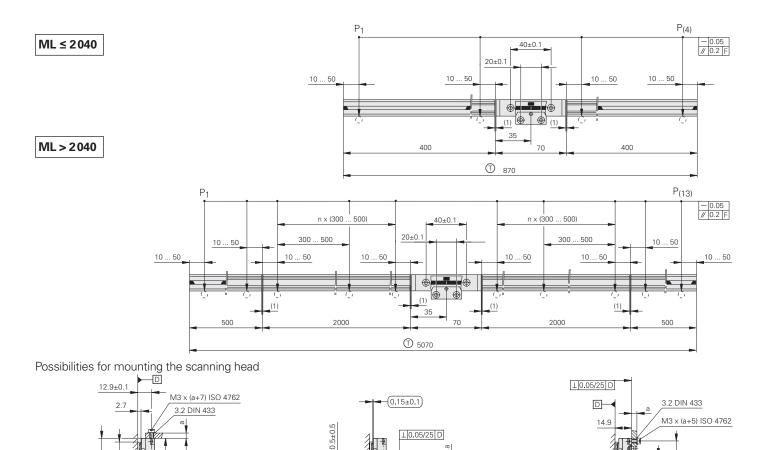
- // 0.05/25 D 3.2 DIN 433 D M3 x (a+5) ISO 4762 18.15 14±0.` (0.15±0.1)
- Beginning of measuring length (ML) S =
- A Selector magnet for limit switch = \bigcirc
- Carrier length = \bigcirc
 - Spacer for measuring lengths from = . 3040 mm
- ⇔ Direction of scanning head motion for = output signals in accordance with interface description

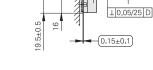
Specifications	LIDA 485	LIDA 475			
Measuring standard Expansion coefficient	Steel scale tape with METALLUR graduation Depending on the mounting surface				
Accuracy grade	± 5 μm				
Measuring length ML* in mm	140 240 340 440 540 640 740 840 940 1040 1140 1240 1340 1440 1540 1640 1740 1840 1940 2040 1				
	Larger measuring lengths up to 30040 mm with a single-section scale tape and individual scale-carrier sections				
Reference marks	One at midpoint of	measuring length			
Incremental signals	∕~ 1 V _{PP}				
Grating period	20 µm	1			
Integrated interpolation* Signal period	– 20 µm	5-fold 4 µm	10-fold 2 µm	50-fold 0.4 µm	100-fold 0.2 µm
Cutoff frequency –3dB	≥ 400 kHz –				
Scanning frequency*	≤ 100 kHz ≤ 50 kHz ≤ 25 kHz ≤ 1				≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz
Edge separation a ¹⁾	-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Traversing speed ¹⁾	480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 60 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min ≤ 30 m/min ≤ 60 m/min ≤ 30 m/min ≤ 15 m/min ≤ 60 m/min ≤ 30 m/min ≤ 7.5 m/min				
Limit switches	L1/L2 with two different magnets; <i>output signals:</i> TTL (without line driver)				
Power supply Power consumption	$5V \pm 5\%$ $5V \pm 5\%$ $5V \pm 5\%$ < 100 mA < 170 mA (without load) $5V \pm 5\%$				
Electrical connection	Cable 3 m with D-sub connector (15-pin), interface electronics for LIDA 475 integrated in the connector				
Cable length ²⁾	≤ 20 m				
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2 (\text{IEC } 60068\text{-}2\text{-}6)$ $\leq 500 \text{ m/s}^2 (\text{IEC } 60068\text{-}2\text{-}27)$				
Operating temperature	0 °C to 50 °C				
Weight Scanning head Connector Scale Connecting cable	20 g (without connecting cable) <i>LIDA 485</i> : 32 g, <i>LIDA 475</i> : 140 g 115 g + 0.25 g/mm measuring length 22 g/m				

* Please indicate when ordering


¹⁾ At the corresponding cutoff or scanning frequency


²⁾ With HEIDENHAIN cable


LIDA 4x7 Series


Incremental linear encoders for measuring ranges up to 6 m

- For measuring steps of 1 μm to 0.1 μm
- Large mounting tolerances
- Limit switches

Dimensions in mm

-E-70 Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Machine guideway F =

12.9±0.1

- Adjust or set) = C
- Max. change during operation = Ρ
 - Gauging points for alignment =
 - =
 - Reference mark position Beginning of measuring length (ML) =

D

3.2 DIN 433

M3 x (a+7) ISO 4762

- r ® S A = Selector magnet for limit switch T
 - Carrier length =

⇔

=

3±0.5 14±0.1

Direction of scanning head motion for

output signals in accordance with

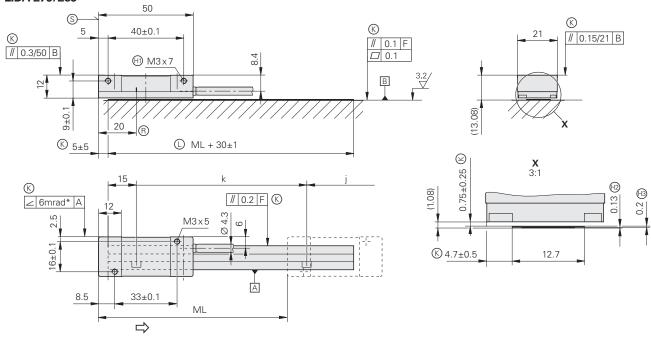
(0.15±0.1)

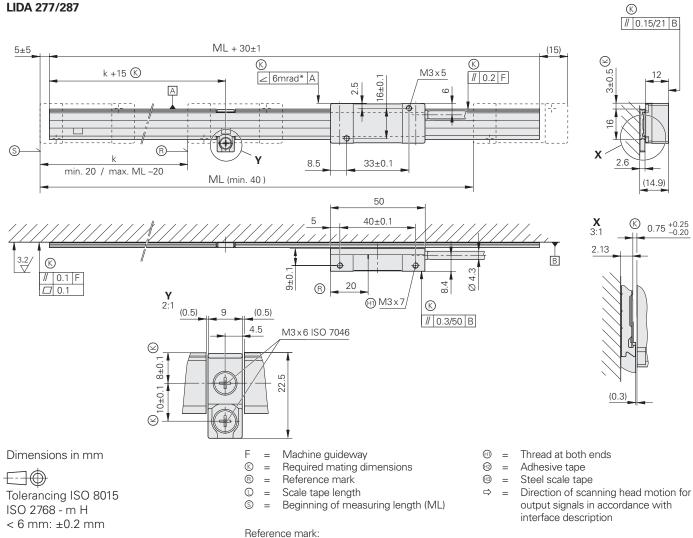
interface description

30

9		
	TIDA 48 Z0 46 R0-011 NIT 207 27 HEIDENHAIN	
U.		
	(G)*	

Specifications	LIDA 487	LIDA 477				
Measuring standard Expansion coefficient	Steel scale tape with METALLUR graduation $\alpha_{therm} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$					
Accuracy grade	± 15 μm or ± 5 μm	\pm 15 µm or \pm 5 µm after linear length-error compensation in the evaluation electronics				
Measuring length ML* in mm	240 440 640 840 1040 1240 1440 1640 1840 2040 2240 2440 2640 2840 3040 3240 3440 3640 3840 4040 4240 4440 4640 4840 5040 5240 5440 5640 5840 6040 5040 5240 5440 5640 5640					
Reference marks	One at midpoint of	One at midpoint of measuring length				
Incremental signals	∕~ 1 V _{PP}					
Grating period	20 µm	1				
Integrated interpolation* Signal period	– 20 µm	5-fold 10-fold 50-fold 100-fold 4 μm 2 μm 0.4 μm 0.2 μm				
Cutoff frequency –3dB	≥ 400 kHz -					
Scanning frequency*	-	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz	
Edge separation a ¹⁾	-	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
Traversing speed ¹⁾	480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min ≤ 120 m/min ≤ 60 m/min ≤ 60 m/min ≤ 30 m/min ≤ 15 m/min ≤ 60 m/min ≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min				≤ 15 m/min	
Limit switches	L1/L2 with two different magnets; <i>output signals:</i> TTL (without line driver)					
Power supply Power consumption	5 V ± 5% 5 V ± 5% 5 V ± 5% < 100 mA < 170 mA (without load) < 255 mA (without load)				t load)	
Electrical connection	Cable 3 m with D-sub connector (15-pin), interface electronics for LIDA 477 integrated in the connector					
Cable length ²⁾	≤ 20 m					
Vibration 55 to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2 (\text{IEC } 60068-2-6)$ $\leq 500 \text{ m/s}^2 (\text{IEC } 60068-2-27)$					
Operating temperature	0 °C to 50 °C					
Weight Scanning head Connector Scale Connecting cable	20 g (without connecting cable) <i>LIDA 487</i> : 32 g, <i>LIDA 477</i> : 140 g 25 g + 0.1 g/mm measuring length 22 g/m					


* Please indicate when ordering ¹⁾ At the corresponding cutoff or scanning frequency ²⁾ With HEIDENHAIN cable


LIDA 200 Series

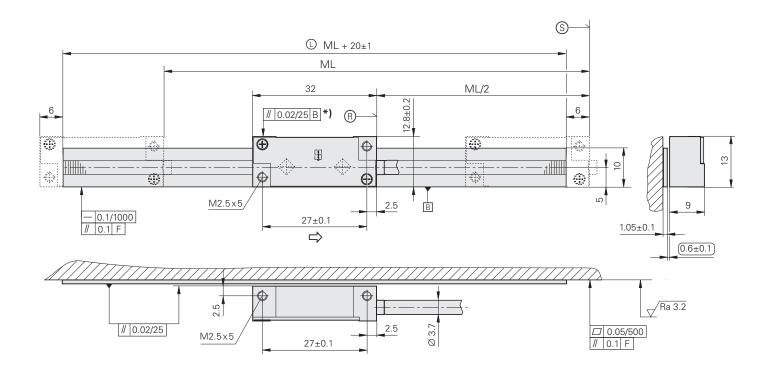
Incremental linear encoder with large mounting tolerance

- For measuring steps to 0.5 µm •
- Scale tape cut from roll
- Scale tape attached via cementable scale-tape carrier (LIDA 2x7) or by cementing to the mounting surface (LIDA 2x9) •
- Reference marks at regular intervals

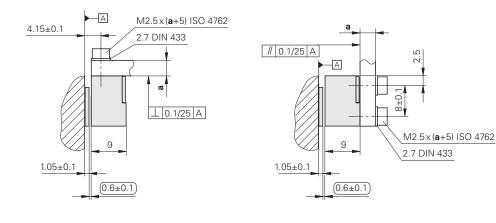
LIDA 279/289

k = Position of 1st reference mark from the beginning of the measuring length, depending on the cut i = Additional reference marks every 100 mm

LIDA 277/287


Specifications	LIDA 287 LIDA 289	LIDA 277 LIDA 279				
Measuring standard Expansion coefficient	Steel scale tape $\alpha_{therm} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$	Steel scale tape $\alpha_{\text{therm}} \approx 10 \cdot 10^{-6} \text{ K}^{-1}$				
Accuracy grade	± 30 μm	± 30 µm				
Scale tape cut from roll*	3 m, 5 m, 10 m	3 m, 5 m, 10 m				
Reference marks	Selectable every 100 m	ım				
Incremental signals	~ 1 V _{PP}	TL TTL x10	□ TTL × 50	□ [] TTL x 100		
Grating period Integrated interpolation* Signal period	200 μm – 200 μm	200 μm 10-fold 20 μm	200 μm 50-fold 4 μm	200 μm 100-fold 2 μm		
Cutoff frequency Scanning frequency Edge separation a	≥ 50 kHz - -	- ≤ 50 kHz ≥ 0.465 μs	– ≤ 25 kHz ≥ 0.175 μs	– ≤ 12.5 kHz ≥ 0.175 µs		
Traversing speed	≤ 600 m/min		≤ 300 m/min			
Power supply Power consumption	5V ± 5% < 110 mA					
Electrical connection	Cable 3 m with D-sub c	connector (15-pin)				
Cable length ¹⁾	≤ 30 m					
Vibration 55 to 2000 Hz Shock 11 ms	\leq 200 m/s ² (IEC 60068-2-6) \leq 500 m/s ² (IEC 60068-2-27)					
Operating temperature	0 °C to 50 °C					
Weight Scanning head Scale tape Scale-tape carrier Connector Cable	20 g (without cable) 20 g/m 70 g/m (only for LIDA 2x7) 32 g 30 g/m					

* Please indicate when ordering ¹⁾ With HEIDENHAIN cable

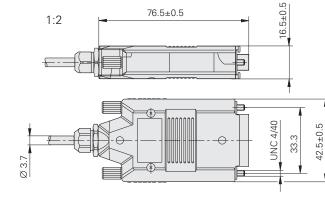

LIDA 500 Series

Incremental linear encoders for limited installation space

- For measuring steps of 1 µm to 0.1 µm
- Simple mounting with PRECIMET adhesive film
- Large mounting tolerances

Possibilities for mounting the scanning head

D-sub connector

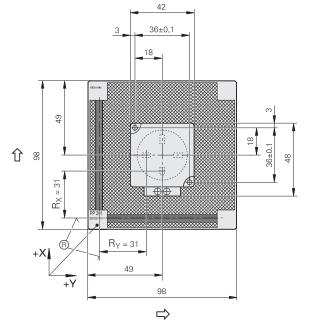

for LIDA 573

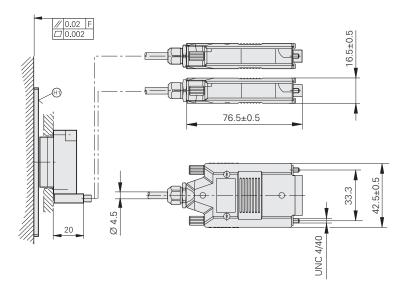
1:2

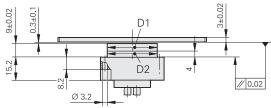
- Machine guideway F =
- ß = Reference mark
- © © S Scale tape length =
- = Beginning of measuring length (ML)
- \subset) = Adjust
- *) Or adjust to max. signal or reference = mark position
- ⇔ Direction of scanning head motion for = output signals in accordance with interface description

Dimensions in mm

 $- - - \oplus$ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm




76.5±0.5


Transminister (1)	
	A LINE DESIGNATION OF THE OWNER.
	and the second

Specifications	LIDA 583	LIDA 573				
Measuring standard Expansion coefficient	METALLUR graduation on glass $\alpha_{therm} \approx 8 \cdot 10^{-6} \text{ K}^{-1}$					
Accuracy grade	± 5 µm	ε 5 μm				
Measuring length ML* in mm	70120170220270320370420470520570620670720770820870920970102070 <td< th=""></td<>					
Reference marks	One at midpoint of	measuring length				
Incremental signals	\sim 1 V _{PP}	∼ 1 V _{PP}				
Grating period Integrated interpolation* Signal period	20 μm – 20 μm	20 μm 5-fold 4 μm	20 μm 10-fold 2 μm	20 μm 25-fold 0.8 μm	20 μm 50-fold 0.4 μm	
Cutoff frequency Scanning frequency Edge separation a	≥ 250 kHz – – ≤ 200 kHz – ≥ 0.220 μs		– ≤ 100 kHz ≥ 0.220 μs	– ≤ 50 kHz ≥ 0.175 μs	– ≤ 25 kHz ≥ 0.175 µs	
Traversing speed	≤ 300 m/min	\leq 300 m/min \leq 240 m/min \leq 120 m/min \leq 60 m/min \leq 30 m/min				
Power supply Power consumption	5V ± 5% < 100 mA					
Electrical connection	Cable 3 m with D-sub connector (15-pin), <i>LIDA 573:</i> interface electronics integrated in the connector					
Cable length ¹⁾	≤ 30 m					
Vibration 55 to 2000 Hz Shock 11ms	200 m/s ² 500 m/s ²					
Operating temperature	0 °C to 50 °C					
Weight Scanning head Scale tape Connector Cable	6 g (without cable) 26 g/m <i>LIDA 583:</i> 32 g, <i>LIDA 573:</i> 140 g 22 g/m					

* Please indicate when ordering ¹⁾ With HEIDENHAIN cable

Dimensions in mm

Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- F = Machine guideway
- Reference mark position relative to center position shown
- ⇒ = Direction of scanning head motion for output signals in accordance with interface description

D1	D2
Ø 32,9 –0,2	Ø 33 –0,02/–0,10

Specifications	PP 281 R	PP 271R					
Measuring standard Expansion coefficient	Two-coordina α _{therm} ≈ 8 · 1	te TITANID [®] ph 0 ⁻⁶ K ⁻¹	ase grating on	glass			
Accuracy grade	± 2 μm						
Measuring range	68 x 68 mm, other measur	ring ranges upo	n request				
Reference marks ¹⁾	One referenc	e mark in each	axis, 3 mm afte	er beginning of	measuring leng	gth	
Incremental signals	∕~ 1 V _{PP}						
Grating period	8 µm	1					
Integrated interpolation* Signal period	– 4 μm	5-fold 0.8 µm			10-fold 0.4 µm		
Cutoff frequency –3dB	≥ 300 kHz	-			1		
Scanning frequency* Edge separation a	-	≤ 200 kHz ≥ 0.220 µs	≤ 100 kHz ≥ 0.465 µs	≤ 50 kHz ≥ 0.950 µs	≤ 100 kHz ≥ 0.220 µs	≤ 50 kHz ≥ 0.465 µs	≤ 25 kHz ≥ 0.950 μs
Traversing speed	≤ 72 m/min	≤ 48 m/min	≤ 24 m/min	≤ 12 m/min	≤ 24 m/min	≤ 12 m/min	≤ 6 m/min
Power supply Power consumption	5 V ± 5% < 185 mA per axis	5V ± 5% < 240 mA pe	r axis (without I	oad)	1	1	1
Electrical connection	Cable 0.5 m v	with D-sub con	nector (15-pin),	interface electi	onics integrate	d in the connec	ctor
Cable length ²⁾	≤ 30 m	≤ 30 m					
Vibration 55 to 2000 Hz Shock 11 ms	\leq 80 m/s ² (l \leq 100 m/s ² (l	EC 60068-2-6) EC 60068-2-27)				
Operating temperature	0 °C to 50 °C	0 °C to 50 °C					
Weight Scanning head Connector Grid plate Connecting cable	170 g 140 g 75 g 37 g/m						

* Please indicate when ordering ¹⁾ The zero crossovers K, L of the reference-mark signal deviate from the interface specification (see the mounting instructions) ²⁾ With HEIDENHAIN cable

Interfaces Incremental Signals 🔨 1 V_{PP}

HEIDENHAIN encoders with \sim 1-V_{PP} interface provide voltage signals that can be highly interpolated.

The sinusoidal **incremental signals** A and B are phase-shifted by 90° elec. and have an amplitude of typically 1 V_{PP}. The illustrated sequence of output signals—with B lagging A—applies for the direction of motion shown in the dimension drawing.

The **reference mark signal** R has a usable component G of approx. 0.5 V. Next to the reference mark, the output signal can be reduced by up to 1.7 V to a quiescent value H. This must not cause the subsequent electronics to overdrive. Even at the lowered signal level, signal peaks with the amplitude G can also appear.

The data on **signal amplitude** apply when the power supply given in the specifications is connected to the encoder. They refer to a differential measurement at the 120-ohm terminating resistor between the associated outputs. The signal amplitude decreases with increasing frequency. The **cutoff frequency** indicates the scanning frequency at which a certain percentage of the original signal amplitude is maintained: • -3 dB \triangleq 70% of the signal amplitude

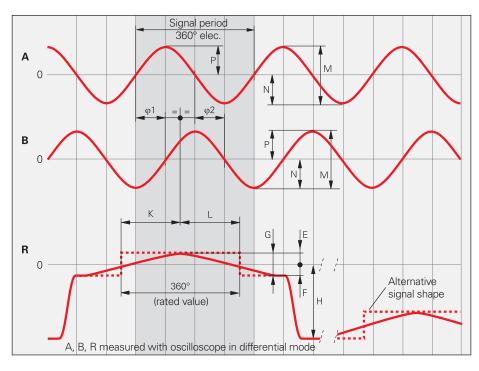
• $-6 \text{ dB} \triangleq 50\%$ of the signal amplitude

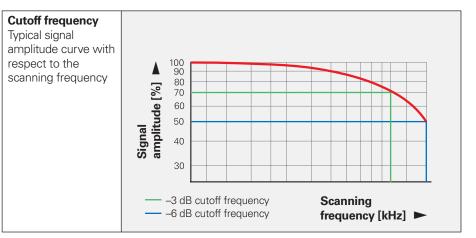
The data in the signal description apply to motions at up to 20% of the –3 dB cutoff frequency.

Interpolation/resolution/measuring step

The output signals of the 1-V_{PP} interface are usually interpolated in the subsequent electronics in order to attain sufficiently high resolutions. For **velocity control**, interpolation factors are commonly over 1000 in order to receive usable velocity information even at low speeds.

Measuring steps for **position measurement** are recommended in the specifications. For special applications, other resolutions are also possible.


Short-circuit stability


A temporary short circuit of one signal output to 0 V or U_P (except encoders with $U_{Pmin} = 3.6$ V) does not cause encoder failure, but it is not a permissible operating condition.

Short circuit at	20 °C	125 °C
One output	< 3 min	< 1 min
All outputs	< 20 s	< 5 s

Interface	Sinusoidal voltage signals \sim 1 V _{PP}					
Incremental signals	2 nearly sinusoidal signals A and B					
	Signal amplitude M:	0.6 to 1.2 V _{PP} ; typically 1 V _{PP}				
	Asymmetry $ P - N /2M$:	≤ 0.065				
	Signal ratio M _A /M _B :	0.8 to 1.25				
	Phase angle $ \varphi 1 + \varphi 2 /2$:	$90^{\circ} \pm 10^{\circ}$ elec.				
Reference-mark	One or several signal peaks R					
signal	Usable component G:	≥ 0.2 V				
	Quiescent value H:	≤ 1.7 V				
	Switching threshold E, F:	0.04 to 0.68 V				
	Zero crossovers K, L:	180° ± 90° elec.				
Connecting cables	HEIDENHAIN cable with shielding PUR [4($2 \times 0.14 \text{ mm}^2$) + ($4 \times 0.5 \text{ mm}^2$)]					
Cable length	max. 150 m with 90 pF/m distribute					
Propagation time	6 ns/m					

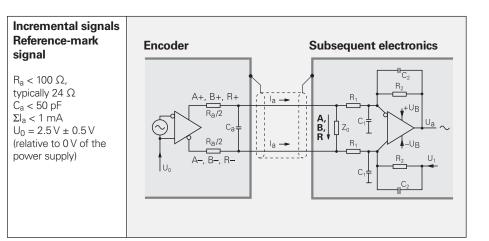
These values can be used for dimensioning of the subsequent electronics. Any limited tolerances in the encoders are listed in the specifications. For encoders without integral bearing, reduced tolerances are recommended for initial servicing (see the mounting instructions).

Input circuitry of the subsequent electronics

Dimensioning

Operational amplifier MC 34074 $Z_0 = 120 \Omega$ $R_1 = 10 k\Omega$ and $C_1 = 100 \text{ pF}$ $R_2 = 34.8 k\Omega$ and $C_2 = 10 \text{ pF}$ $U_B = \pm 15 \text{ V}$ U_1 approx. U_0

-3dB cutoff frequency of circuitry


Approx. 450 kHz Approx. 50 kHz and $C_1 = 1000 \text{ pF}$ and $C_2 = 82 \text{ pF}$ The circuit variant for 50 kHz does reduce the bandwidth of the circuit, but in doing so it improves its noise immunity.

Output signals of the circuit

 $U_a = 3.48 V_{PP}$ typical Gain 3.48

Monitoring the incremental signals

The following threshold sensitivities are recommended for signal monitoring: Minimum signal amplitude M: $0.30 V_{PP}$ Maximum signal amplitude M: $1.35 V_{PP}$

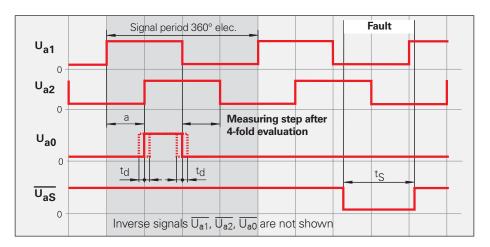
Interfaces

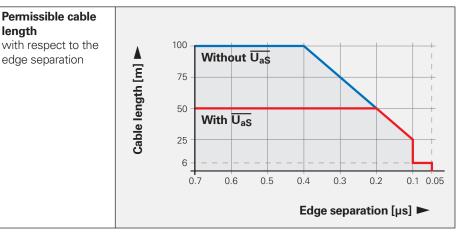
HEIDENHAIN encoders with TL TTL interface incorporate electronics that digitize sinusoidal scanning signals with or without interpolation.

The **incremental signals** are transmitted as the square-wave pulse trains U_{a1} and U_{a2}, phase-shifted by 90° elec. The **reference mark signal** consists of one or more reference pulses U_{a0}, which are gated with the incremental signals. In addition, the integrated electronics produce their **inverse signals** U_{a1}, U_{a2} and U_{a0} for noise-proof transmission. The illustrated sequence of output signals—with U_{a2} lagging U_{a1}—applies for the direction of motion shown in the dimension drawing.

The **fault-detection signal** $\overline{U_{aS}}$ indicates fault conditions such as breakage of the power line or failure of the light source. It can be used for such purposes as machine shut-off during automated production.

The distance between two successive edges of the incremental signals U_{a1} and U_{a2} through 1-fold, 2-fold or 4-fold evaluation is one **measuring step.**

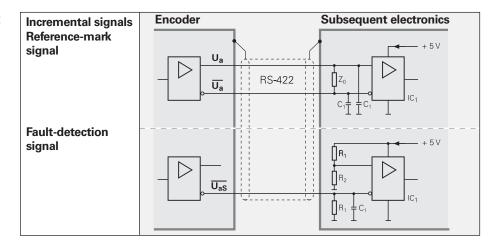

The subsequent electronics must be designed to detect each edge of the square-wave pulse. The minimum **edge separation a** listed in the *Specifications* applies for the illustrated input circuitry with a cable length of 1 m, and refers to a measurement at the output of the differential line receiver. Propagation-time differences in cables additionally reduce the edge separation by 0.2 ns per meter of cable length. To prevent counting error, design the subsequent electronics to process as little as 90% of the resulting edge separation.


The max. permissible **shaft speed** or **traversing velocity** must never be exceeded.

The permissible cable length for

transmission of the TTL square-wave signals to the subsequent electronics depends on the edge separation a. It is max. 100 m, or 50 m for the fault detection signal. This requires, however, that the power supply (see *Specifications*) be ensured at the encoder. The sensor lines can be used to measure the voltage at the encoder and, if required, correct it with an automatic system (remote sense power supply).

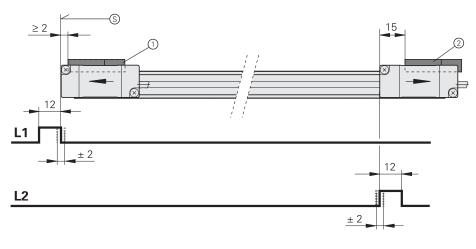
Interface	Square-wave signals FLITTL					
Incremental signals	2TTL square-wave signals U_{a1}, U_{a2} and their inverted signals U_{a1} , U_{a2}					
Reference-mark signal Pulse width Delay time	1 or more TTL square-wave pulses U_{a0} and their inverted pulses $\overline{U_{a0}}$ 90° elec. (other widths available on request); <i>LS 323</i> : ungated $ t_d \le 50$ ns					
Fault-detection signal Pulse width	$\begin{array}{l} \mbox{1TTL square-wave pulse } \overline{U_{aS}} \\ \mbox{Improper function: LOW (upon request: } U_{a1}/U_{a2} \mbox{ high impedance)} \\ \mbox{Proper function: HIGH} \\ \mbox{t}_S \geq 20 \mbox{ ms} \end{array}$					
Signal amplitude	Differential line driver as per EIA standard RS 422 $U_H \ge 2.5 \text{ V}$ at $-I_H = 20 \text{ mA}$ $U_L \le 0.5 \text{ V}$ at $-I_L = 20 \text{ mA}$					
Permissible load	$\begin{array}{ll} Z_0 \geq 100 \ \Omega & \mbox{between associated outputs} \\ I_L \leq 20 \ mA & \mbox{max. load per output} \\ C_{load} \leq 1000 \ pF & \mbox{with respect to } 0 \ V \\ Outputs \ protected \ against \ short \ circuit \ to \ 0 \ V \end{array}$					
Switching times (10% to 90%)	t_+ / $t \le 30$ ns (typically 10 ns) with 1 m cable and recommended input circuitry					
Connecting cable Cable length Propagation time	$\begin{array}{l} \mbox{HEIDENHAIN cable with shielding} \\ \mbox{PUR [4(2 \times 0.14 \mbox{ mm}^2) + (4 \times 0.5 \mbox{ mm}^2)]} \\ \mbox{Max. 100 m (U_{as} max. 50 m) with 90 pF/m distributed capacitance} \\ \mbox{6 ns/m} \end{array}$					



Input circuitry of the subsequent electronics

Dimensioning

IC₁ = Recommended differential line receivers DS 26 C 32 AT Only for a > 0.1 μ s: AM 26 LS 32 MC 3486 SN 75 ALS 193


- $\begin{array}{l} R_1 &= 4.7 \ k\Omega \\ R_2 &= 1.8 \ k\Omega \\ Z_0 &= 120 \ \Omega \\ C_1 &= 220 \ pF \ (serves \ to \ improve \ noise \end{array}$ immunity)

Interfaces Limit Switches

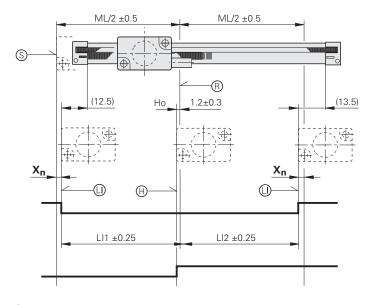
LIDA 400 encoders are equipped with limit switches that make limit-position detection and the design of homing tracks possible. The limit switches are activated by differing adhesive magnets to distinguish between the left or right limit. The magnets can be configured in series to form homing tracks. The signals from the limit switches are sent over separate lines and are therefore directly available. Yet the cable has only a very thin diameter of 3.7 mm in order to keep the forces on movable machine elements to a minimum.

		LIDA 47x	LIDA 48x			
Output signals	i	One TTL square-wave pulse from each limit switch L1 and L2; "active high"				
Signal amplitude		TTL from push-pull stage (e.g. 74 HCT 1G 08)	TTL from common-collector circuit with 10 $k\Omega$ load resistance against 5 V			
Permissible load		$I_{aL} \le 4 \text{ mA}$ $I_{aH} \le 4 \text{ mA}$				
Switching times (10% to 90%)	Rise time Fall time	t ₊ ≤ 50 ns t ₋ ≤ 50 ns Measured with 3 m cable and recommended input circuitry	$t_+ \le 10 \ \mu s$ $t \le 3 \ \mu s$ Measured with 3 m cable and recommended input circuitry			
Permissible cal	ble length	Max. 20 m				

L1/L2 = Output signals from limit switches 1 and 2 Tolerance of the trigger edge: ± 2 mm

- © = Beginning of measuring length (ML)
- ① = Magnet N for limit switch 1
- 2 = Magnet S for limit switch 2

Limit switches LIDA 400

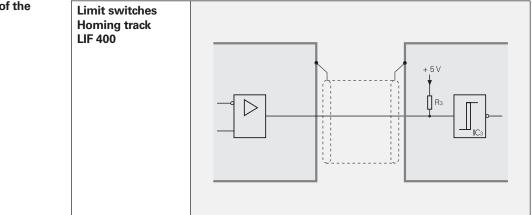

Recommended input circuitry of the subsequent electronics

 $\begin{array}{l} \textbf{Dimensioning} \\ \text{IC}_3 \text{ e. g. } 74\text{AC}14 \\ \text{R}_3 = 1.5 \text{ k}\Omega \end{array}$

Position Detection

Besides the incremental graduation, the LIF 4x1 features a homing track and limit switches for limit position detection. The signals are transmitted in TTL levels over the separate lines H and L and are therefore directly available. Yet the cable has only a very thin diameter of 4.5 mm in order to keep the forces on movable machine elements to a minimum.

	LIF 4x1
Output signals	One TTL pulse for homing track H and limit switch L
Signal amplitude	TTL $U_H \ge 3.8 \text{ V}$ at $-I_H = 8 \text{ mA}$ $U_L \le 0.45 \text{ V}$ at $I_L = 8 \text{ mA}$
Permissible load	$ \begin{array}{l} R \geq 680 \ \Omega \\ I_{L} \leq 8 \ mA \end{array} $
Permissible cable length	Max. 10 m



X_{n =} Var. 01 **X**₁ = 2 mm Var. 02 **X**₂ = 14 mm Var. 03 **X**₃ = 22 mm

(B) = Reference mark position
 (S) = Beginning of measuring length (ML)

Example 1
 Example 2
 Example 2
 Example 3
 Example 4
 Example 4

Ho = Trigger point for homing

Recommended input circuitry of the subsequent electronics

Dimensioning

IC₃ e.g. 74AC14 $R_3 = 4.7 \text{ k}\Omega$

Interfaces **Electrical Connection**

12-pin HEIDENHAIN coupling						12-pin HEIDENH connecto						
		Power	supply				Incremen	tal signals			Other	signals
	12	2	10	11	5	6	8	1	3	4	7	9
глштг	UP	Sensor 5∨	0 V	Sensor 0 ∨	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	$\overline{U_{aS}}$	1)
\sim 1 V _{PP}	•	•	•	•	A+	A –	B+	B–	R+	R–	L1 ²⁾	L2 ²⁾
	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	Violet	Yellow

Shield on housing; **U**_P = power supply voltage Sensor: The sensor line is connected internally with the corresponding power line Vacant pins or wires must not be used

¹⁾TTL/11 μ A_{PP} conversion for PWT

²⁾ Only for LIDA 48x;

Color assignment applies only to connecting cable

15-pin D-sub connector					15-pin D-sub connector with integrated interface electronics					-				
		Power	supply		I			ncremental signals			Other signals			
	4	12	2	10	1	9	3	11	14	7	13	8	6	15
глшг	UP	Sensor 5 V	0 V	Sensor 0 ∨	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	$\overline{U_{a0}}$	U _{aS}	L1²⁾ H ³⁾	L2²⁾	1)
\sim 1 V _{PP}	•	•	•		A+	A –	B+	В-	R+	R–	Vacant	1		Vacant
€	Brown/ Green	Blue	White/ Green	White	Brown	Green	Gray	Pink	Red	Black	Violet	Green/ Black	Yellow/ Black	Yellow

Shield on housing; **U**_P = power supply voltage Sensor: The sensor line is connected internally with the corresponding power line Vacant pins or wires must not be used

 $^{1)}$ TTL/11 μA_{PP} conversion for PWT. Not with LIDA 27x $^{2)}$ Only for LIDA 4xx;

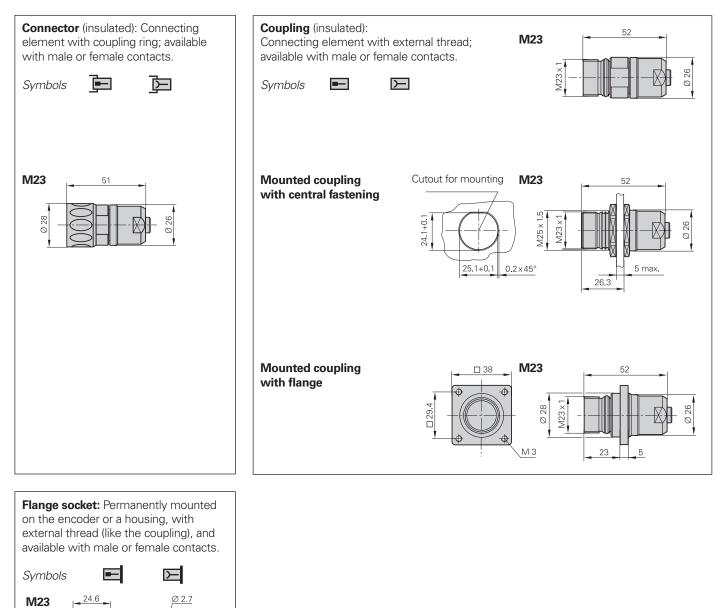
Color assignment applies only to connecting cable ³⁾ Only for LIF 481

Evaluation Electronics

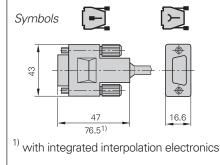
IK 220

Universal PC counter card The IK 220 is an expansion board for AT-compatible PCs for recording the measured values of **two incremental or**

absolute linear or angle encoders. The subdivision and counting electronics **subdivide** the **sinusoidal input signals** to generate up to **4096 measuring steps.** A driver software package is included in delivery.



For more information, see the *IK 220 Product Information* sheet.


	IK 220					
Input signals (switchable)	∕~ 1 V _{PP}	🤨 11 μA _{PP}	EnDat 2.1	SSI		
Encoder inputs	2 D-sub conne	ections (15-pin)	male			
Max. input frequency	500 kHz	33 kHz	-			
Max. cable length	60 m	I	10 m			
Signal subdivision (signal period : meas. step)	Up to 4096-fold					
Data register for measured values (per channel)	48 bits (44 bit	s used)				
Internal memory	For 8192 posi	tion values				
Interface	PCI bus (plug	and play)				
Driver software and demonstration program	For Windows 98/NT/2000/XP in VISUAL C++, VISUAL BASIC and BORLAND DELPHI					
Dimensions	Approx. 190 n	nm × 100 mm				

Cables and Connecting Elements

General Information

D-sub connector: For HEIDENHAIN controls, counters and IK absolute value cards.

The pins on connectors are **numbered** in the direction opposite to those on couplings or flange sockets, regardless of whether the contacts are

male contacts or

female contacts.

When engaged, the connections provide **protection** to IP 67 (D-sub connector: IP 50; IEC 60 529). When not engaged, there is no protection.

Accessories for flange sockets and M23 mounted couplings

Bell seal ID 266526-01

Threaded metal dust cap ID 219926-01

Connecting Cables

		LIP/LIF/LID without lim homing sig	nit or	For LIF 400, with limit a homing sig	nd
PUR connecting cable [6(2 × AWG28) + (4 ±	x 0.14 mm ²)]	1			
PUR connecting cable $[4(2 \times 0.14 \text{ mm}^2) + ($	$4 \times 0.5 \text{ mm}^2$) + 2 x (2 x 0.14 mm ²)]]
PUR connecting cable [6(2 x 0.19 mm ²)]]	
PUR connecting cable $[4(2 \times 0.14 \text{ mm}^2) + ($	4 x 0.5 mm ²)]	Ø8mm	Ø 6 mm ¹⁾	Ø8mm	Ø 6 mm ¹⁾
Complete with D-sub connector (female) and M23 connector (male)		331 693-xx	355215-xx	-	_
With one D-sub connector (female)		332433-xx	355209-xx	354411-xx	355398-xx
Complete with D-sub connectors (female and male)		335074-xx	355186-xx	354379-xx	355397-xx
Complete with D-sub connectors (female) Assignment for IK 220		335077-xx	349687-xx	-	_
Cable without connectors	<u>→</u>	244957-01	291 639-01	354341-01	355241-01
Adapter cable for LIP 3x2 with M23 coupling (male)		_	310128-xx	_	-
Adapter cable for LIP 3x2 with D-sub connector, assignment for IK 220		298430-xx	-	-	-
Adapter cable for LIP 3x2 without connector		-	310131-xx	-	_
Complete with M23 connectors (female/male)	<u>þ</u>	298399-xx	-	-	-
With one M23 connector (female)	<u>}</u>	309777-xx	_	_	-
Connector on connecting cable to connector on encoder cable		For cable	Ø 8 mm Ø 6 mm	315650-14	
Connector on connecting cable to mating element on encoder cable	M23 connector (female)	For cable	Ø8mm	291697-05	
M23 connector for connection to subsequent electronics	M23 connector (male)	For cable	Ø 8 mm Ø 6 mm	291 697-08 291 697-07	
M23 flange socket for mounting on the subsequent electronics	M23 flange socket (female)	F		315892-08	
Adapter connector 1Vpp/11 μApp For converting the 1 VpP signals to 11 μApp; M23 connector (female) 12-pin and M23 connector (male) 9-pin		F		364914-01	

¹⁾ Cable length for Ø 6 mm: max. 9 m

General Electrical Information

Power Supply

The encoders require a stabilized dc **voltage UP** as power supply. The respective Specifications state the required power supply and the current consumption. The permissible ripple content of the dc voltage is:

- High frequency interference $U_{PP} < 250 \text{ mV}$ with dU/dt > 5 V/µs
- Low frequency fundamental ripple $U_{PP} < 100 \text{ mV}$

The values apply as measured at the encoder, i.e., without cable influences. The voltage can be monitored and adjusted with the encoder's sensor lines. If a controllable power supply is not available, the voltage drop can be halved by switching the sensor lines parallel to the corresponding power lines.

Calculation of the line drop:

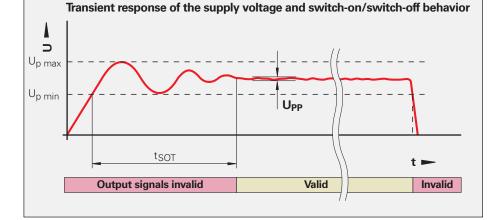
$$\Delta U = 2 \cdot 10^{-3} \cdot \frac{L_{\rm K} \cdot I}{56 \cdot A_{\rm P}}$$

- where ∆U: Line drop in V L_C: Cable length in m
 - 1: Current consumption in mA

. |

- A_P: Cross section of power lines
- in mm²

Switch-on/off behavior of the encoders


The output signals are valid no sooner than after switch-on time $t_{SOT} = 1.3 \text{ s} (2 \text{ s for})$ PROFIBUS-DP) (see diagram). During time t_{SOT} they can have any levels up to 5.5 V (with HTL encoders up to UPmax). If an interpolation electronics unit is inserted between the encoder and the power supply, the unit's switch-on/off characteristics must also be considered. If the power supply is switched off, or when the supply voltage falls below $U_{\mbox{min}}$, the output signals are also invalid. This data applies to the encoders listed in the catalog—customized interfaces are not considered.

Encoders with new features and increased performance range may take longer to switch on (longer time t_{SOT}). If you are responsible for developing subsequent electronics, please contact HEIDENHAIN in good time.

Isolation

The encoder housings are isolated against internal circuits.

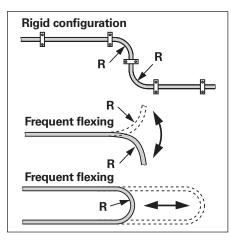
Rated surge voltage: 500 V (preferred value as per VDE 0110 Part 1, overvoltage category II, contamination level 2)

Cables

HEIDENHAIN cables are mandatory for safety-related applications. The cable lengths listed in the

Specifications apply only to HEIDENHAIN cables and the recommended input circuitry of the subsequent electronics.

Durability


All encoders have polyurethane (PUR) cables. PUR cables are resistant to oil, hydrolysis and microbes in accordance with VDE 0472. They are free of PVC and silicone and comply with UL safety directives. The UL certification AWM STYLE 20963 80 °C 30 V E63216 is documented on the cable.

Temperature range

HEIDENHAIN cables can be used for • rigid configuration -40 °C to 85 °C –10 °C to 85 °C frequent flexing Cables with limited resistance to hydrolysis and microbes are rated for up to 100 °C. If required, please ask for assistance from HEIDENHAIN Traunreut.

Bend radius

The permissible bend radii R depend on the cable diameter and the configuration:

Connect HEIDENHAIN position encoders only to subsequent electronics whose power supply is generated through double or strengthened insulation against line voltage circuits. Also see IEC 364-4-41: 1992, modified Chapter 411 regarding "protection against both direct and indirect touch" (PELV or SELV). If position encoders or electronics are used in safety-related applications, they must be operated with protective extra-low voltage (PELV) and provided with overcurrent protection or, if required, with overvoltage protection.

Cable	Cross section of	Bend radius R					
	1 V _{PP} /TTL/HTL	11 μΑ _{ΡΡ}	EnDat/SSI 17-pin	EnDat ⁴⁾ 8-pin	Rigid con- figuration		
Ø 3.7 mm	0.05 mm ²	-	_	-	≥ 8 mm	≥ 40 mm	
Ø 4.3 mm	0.24 mm ²	-	_	-	-	≥ 50 mm	
Ø 4.5 mm Ø 5.1 mm	0.14/0.05 ²⁾ mm ²						
Ø 6 mm Ø 10 mm ¹⁾	0.14/0.19 ²⁾ mm ³			0.34 mm ²	≥ 20 mm≥ 35 mm	≥ 75 mm ≥ 75 mm	
Ø 8 mm Ø 14 mm ¹⁾	0.5 mm ²	1 mm ²	0.5 mm ²	1 mm ²	≥ 40 mm ≥ 100 mm	≥ 100 mm ≥ 100 mm	
¹⁾ Metal armor ²⁾ Length gauges ³⁾ LIDA 400 ⁴⁾ Also Fanuc, Mitsubishi							

Electrically Permissible Speed/ **Traversing Speed**

The maximum permissible shaft speed or traversing velocity of an encoder is derived from

- the mechanically permissible shaft speed/traversing velocity (if listed in Specifications) and
- the electrically permissible shaft speed or traversing velocity.

For encoders with sinusoidal output signals, the electrically permissible shaft speed or traversing velocity is limited by the -3 dB/ -6 dB cutoff frequency or the permissible input frequency of the subsequent electronics.

For encoders with square-wave signals,

the electrically permissible shaft speed/ traversing velocity is limited by

- the maximum permissible scanning frequency fmax of the encoder and
- the minimum permissible edge separation a for the subsequent electronics.

For angular or rotary encoders

 $n_{max} = \frac{f_{max}}{z} \cdot 60 \cdot 10^3$

For linear encoders

 $v_{max} = f_{max} \cdot SP \cdot 60 \cdot 10^{-3}$

and:

- n_{max}: Electrically permissible speed in rpm
- vmax: Electrically permissible traversing velocity in m/min
- fmax: Max. scanning/output frequency of encoder or input frequency of subsequent electronics in kHz
- Line count of the angle or rotary Ζ: encoder per 360°
- SP: Signal period of the linear encoder in µm

Noise-Free Signal Transmission

Electromagnetic compatibility/ **CE** compliance

When properly installed, and when HEIDENHAIN connecting cables and cable assemblies are used, HEIDENHAIN encoders fulfill the requirements for electromagnetic compatibility according to 2004/108/EC with respect to the generic standards for:

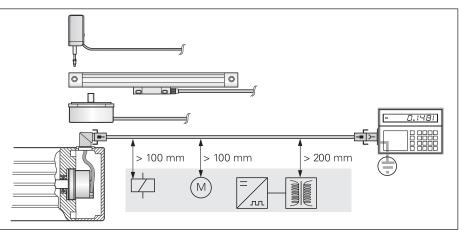
Noise immunity EN 61000-6-2:						
Specifically:						
– ESD	EN 61000-4-2					
– Electromagnetic fields	EN 61000-4-3					
– Burst	EN 61000-4-4					
– Surge	EN 61000-4-5					
 Conducted 						
disturbances	EN 61000-4-6					
 Power frequency 						
magnetic fields	EN 61000-4-8					
 Pulse magnetic fields 	EN 61000-4-9					
Interference EN 61000-6-4:						
Specifically:						

- For industrial, scientific and medical EN 55011 equipment (ISM)
- For information technology EN 55022 equipment

Transmission of measuring signalselectrical noise immunity

Noise voltages arise mainly through capacitive or inductive transfer. Electrical noise can be introduced into the system over signal lines and input or output terminals.

Possible sources of noise are:


- Strong magnetic fields from transformers, brakes and electric motors
- Relays, contactors and solenoid valves High-frequency equipment, pulse
- devices, and stray magnetic fields from switch-mode power supplies
- AC power lines and supply lines to the above devices

Protection against electrical noise

The following measures must be taken to ensure disturbance-free operation:

- Use only HEIDENHAIN cables.
- Use connectors or terminal boxes with metal housings. Do not conduct any extraneous signals.
- · Connect the housings of the encoder, connector, terminal box and evaluation electronics through the shield of the cable. Connect the shielding in the area of the cable outlets to be as induction-free as possible (short, full-surface contact).
- Connect the entire shielding system with the protective ground.
- Prevent contact of loose connector housings with other metal surfaces.
- The cable shielding has the function of an equipotential bonding conductor. If compensating currents are to be expected within the entire system, a separate equipotential bonding conductor must be provided. See also EN 50178/ 4.98 Chapter 5.2.9.5 regarding "protective connection lines with small cross section."
- Do not lay signal cables in the direct vicinity of interference sources (inductive consumers such as contacts, motors, frequency inverters, solenoids, etc.).
- Sufficient decoupling from cables conducting interference signals can usually be achieved by an air clearance of 100 mm or, when cables are in metal ducts, by a grounded partition.
- A minimum spacing of 200 mm to inductors in switch-mode power supplies is required. See also EN 50178/4.98 Chapter 5.3.1.1, regarding cables and lines, as well as EN 50174-2/09.01, Chapter 6.7, regarding grounding and potential compensation.
- When using rotary encoders in electromagnetic fields greater than 30 mT, HEIDENHAIN recommends consulting with the main facility in Traunreut.

Both the cable shielding and the metal housings of encoders and subsequent electronics have a shielding function. The housings must have the same potential and be connected to the main signal ground over the machine chassis or by means of a separate potential compensating line. Potential compensating lines should have a minimum cross section of 6 mm^2 (Cu).

Minimum distance from sources of interference

HEIDENHAIN Measuring and Test Equipment

The **PWM 9** is a universal measuring device for checking and adjusting HEIDENHAIN incremental encoders. There are different expansion modules available for checking the different encoder signals. The values can be read on an LCD monitor. Soft keys provide ease of operation.

	PWM 9
Inputs	Expansion modules (interface boards) for 11 µA _{PP} ; 1 V _{PP} ; TTL; HTL; EnDat*/SSI*/commutation signals *No display of position values or parameters
Functions	 Measures signal amplitudes, current consumption, operating voltage, scanning frequency Graphically displays incremental signals (amplitudes, phase angle and on-off ratio) and the reference-mark signal (width and position) Displays symbols for the reference mark, fault detection signal, counting direction Universal counter, interpolation selectable from single to 1 024-fold Adjustment support for exposed linear encoders
Outputs	Inputs are connected through to the subsequent electronicsBNC sockets for connection to an oscilloscope
Power supply	10 to 30 V, max. 15 W
Dimensions	150 mm x 205 mm x 96 mm

The **PWT** is a simple adjusting aid for HEIDENHAIN incremental encoders. In a small LCD window the signals are shown as bar charts with reference to their tolerance limits.

	PWT 10	PWT 17	PWT 18
Encoder input	~ 11 μA _{PP}		\sim 1 V _{PP}
Functions	Measurement of signal amplitude Wave-form tolerance Amplitude and position of the reference mark signal		
Power supply	Via power supply u	nit (included)	
Dimensions	114 mm x 64 mm >	< 29 mm	

The **SA 27** adapter connector serves for tapping the sinusoidal scanning signals of the LIP 372 off the APE. Exposed pins permit connection to an oscilloscope through standard measuring cables.

	SA 27
Encoder	LIP 372
Function	Measuring points for the connection of an oscilloscope
Power supply	Via encoder
Dimensions	Approx. 30 mm x 30 mm

The **APS 27** encoder diagnostic kit is necessary for assessing the mounting tolerances of the LIDA 27x with TTL interface. In order to examine it, the LIDA 27x is either connected to the subsequent electronics via the PS 27 test connector, or is operated directly on the PG 27 test unit.

Green LEDs for the incremental signals and reference pulse, respectively, indicate correct mounting. If they shine red, then the mounting must be checked again.

	APS 27
Encoder	LIDA 277, LIDA 279
Function	Good/bad detection of the TTL signals (incremental signals and reference pulse)
Power supply	Via subsequent electronics or power supply unit (included in items supplied)
Items supplied	PS 27 test connector PG 27 test unit Power supply unit for PG 27 (110 to 240 V, including adapter plug) Shading films

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH Dr.-Johannes-Heidenhain-Straße 5 83301 Traunreut, Germany [®] +49 (8669) 31-0 [™] +49 (8669) 5061 E-Mail: info@heidenhain.de

www.heidenhain.de

DE HEIDENHAIN Technisches Büro Nord 12681 Berlin, Deutschland (030) 54705-240 E-Mail: tbn@heidenhain.de

> HEIDENHAIN Technisches Büro Mitte 08468 Heinsdorfergrund, Deutschland (03765) 69544 E-Mail: tbm@heidenhain.de

HEIDENHAIN Technisches Büro West 44379 Dortmund, Deutschland (0231) 618083-0 E-Mail: tbw@heidenhain.de

HEIDENHAINTechnisches Büro Südwest 70771 Leinfelden-Echterdingen, Deutschland © (0711) 993395-0 E-Mail: tbsw@heidenhain.de

HEIDENHAIN Technisches Büro Südost 83301 Traunreut, Deutschland © (08669) 31-1345 E-Mail: tbso@heidenhain.de

- AT HEIDENHAIN Techn. Büro Österreich 83301 Traunreut, Germany 2 +49 (8669) 31-1337 E-Mail: tba@heidenhain.de
- AU FCR Motion Technology Pty. Ltd Laverton North 3026, Australia +61 (3) 93626800 E-Mail: vicsales@fcrmotion.com
- BE HEIDENHAIN NV/SA 1760 Roosdaal, Belgium 2 +32 (54) 343158 E-Mail: sales@heidenhain.be

BG ESD Bulgaria Ltd. Sofia 1172, Bulgaria +359 (2) 9632949 E-Mail: info@esd.bg

- BR DIADUR Indústria e Comércio Ltda. 04763-070 – São Paulo – SP, Brazil 🐵 +55 (11) 5696-6777 E-Mail: diadur@diadur.com.br
- BY Belarus → RU
- CH HEIDENHAIN (SCHWEIZ) AG 8603 Schwerzenbach, Switzerland +41 (44) 8062727 E-Mail: verkauf@heidenhain.ch
- CN DR. JOHANNES HEIDENHAIN (CHINA) Co., Ltd. Beijing 101312, China +86 10-80420000 E-Mail: sales@heidenhain.com.cn
- CS Serbia and Montenegro → BG

- CZ HEIDENHAIN s.r.o. 106 00 Praha 10, Czech Republic @ +420 272658131 E-Mail: heidenhain@heidenhain.cz
- ES FARRESA ELECTRONICA S.A. 08028 Barcelona, Spain +34 934092491 E-Mail: farresa@farresa.es
- FI HEIDENHAIN Scandinavia AB 02770 Espoo, Finland +358 (9) 8676476 E-Mail: info@heidenhain.fi
 - HEIDENHAIN FRANCE sarl 92310 Sèvres, France 1433 0141143000 E-Mail: info@heidenhain.fr

FR

GR

HΚ

IN

GBHEIDENHAIN (G.B.) LimitedBurgess Hill RH15 9RD, United KingdomImage: 0.100 millionImage: 0.100 million

MB Milionis Vassilis 17341 Athens, Greece 🐵 +30 (210) 9336607 E-Mail: bmilioni@otenet.gr

- HEIDENHAIN LTD Kowloon, Hong Kong +852 27591920 E-Mail: service@heidenhain.com.hk
- HR Croatia → SL
- HU HEIDENHAIN Kereskedelmi Képviselet 1239 Budapest, Hungary +36 (1) 4210952 E-Mail: info@heidenhain.hu
- ID PT Servitama Era Toolsindo Jakarta 13930, Indonesia 2 +62 (21) 46834111 E-Mail: ptset@group.gts.co.id
- IL NEUMO VARGUS MARKETING LTD. Tel Aviv 61570, Israel 🐵 +972 (3) 5373275 E-Mail: neumo@neumo-vargus.co.il

- IT HEIDENHAIN ITALIANA S.r.I. 20128 Milano, Italy 20128 + 39 02270751 E-Mail: info@heidenhain.it
- JP HEIDENHAIN K.K. Tokyo 102-0073, Japan +81 (3) 3234-7781 E-Mail: sales@heidenhain.co.jp
- MK Macedonia → BG
- MY ISOSERVE Sdn. Bhd 56100 Kuala Lumpur, Malaysia @ +60 (3) 91320685 E-Mail: isoserve@po.jaring.my

- NL HEIDENHAIN NEDERLAND B.V. 6716 BM Ede, Netherlands +31 (318) 581800 E-Mail: verkoop@heidenhain.nl
- NO HEIDENHAIN Scandinavia AB 7300 Orkanger, Norway @ +47 72480048 E-Mail: info@heidenhain.no
- PH Machinebanks` Corporation Quezon City, Philippines 1113 +63 (2) 7113751 E-Mail: info@machinebanks.com
 - APS 02-489 Warszawa, Poland @ +48 228639737 E-Mail: aps@apserwis.com.pl
- PT FARRESA ELECTRÓNICA, LDA. 4470 - 177 Maia, Portugal +351 229478140 E-Mail: fep@farresa.pt
- RO Romania → HU

PL

- RU OOO HEIDENHAIN 125315 Moscow, Russia +7 (495) 931-9646 E-Mail: info@heidenhain.ru

Slovakia → CZ

SK

- SL Posredništvo HEIDENHAIN SAŠO HÜBL s.p. 2000 Maribor, Slovenia +386 (2) 4297216 E-Mail: hubl@siol.net
- TR T&M Mühendislik San. ve Tic. LTD. ŞTİ. 34738 Erenköy-Istanbul, Turkey ☞ +90 (216) 3022345 E-Mail: info@tmmuhendislik.com.tr
- TW HEIDENHAIN Co., Ltd. Taichung 407, Taiwan +886 (4) 23588977 E-Mail: info@heidenhain.com.tw
- UA Ukraine → RU
- US HEIDENHAIN CORPORATION Schaumburg, IL 60173-5337, USA 2 +1 (847) 490-1191 E-Mail: info@heidenhain.com
- VE Maquinaria Diekmann S.A. Caracas, 1040-A, Venezuela 2 +58 (212) 6325410 E-Mail: purchase@diekmann.com.ve
- VN AMS Advanced Manufacturing Solutions Pte Ltd HCM City, Viêt Nam 2 +84 (8) 9123658 - 8352490 E-Mail: davidgoh@amsvn.com
- ZA MAFEMA SALES SERVICES C.C. Midrand 1685, South Africa @ +27 (11) 3144416 E-Mail: mailbox@mafema.co.za

Vollständige Adressen siehe www.heidenhain.de For complete addresses see www.heidenhain.de