

HEIDENHAIN

Angle EncodersWith Integral Bearing

Angle encoders with integral bearing and integrated stator coupling

Angle encoders with integral bearing for separate shaft coupling

Information on

- Angle encoders without integral bearing
- Magnetic modular encoders
- Rotary encoders
- Encoders for servo drives
- Exposed linear encoders
- Linear encoders for numerically controlled machine tools
- Interface electronics
- HEIDENHAIN controls is available upon request as well as on the Internet at www.heidenhain.de.

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the *Interfaces for HEIDENHAIN Encoders* brochure.

This catalog supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the catalog edition valid when the contract is made.

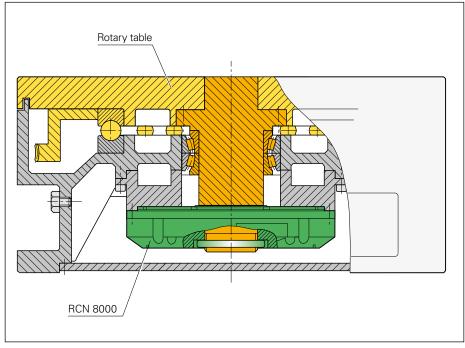
Standards (ISO, EN, etc.) apply only where explicitly stated in the catalog.

Contents

Overview					
	HEIDENHAIN angle	encoders			4
	Selection guide	Absolute angle encoders with	integral bearing	g	6
		Incremental angle encoders v	vith integral bea	aring	8
		Angle encoders and modular	encoders witho	ut integral bearing	10
echnical features and mount	ing information				
	Measuring principles	Measuring standard, Measurin	g principles, Pho	toelectric scanning	14
	Measuring accuracy				18
	Mechanical design t	ypes and mounting			20
	General mechanical	information			26
pecifications		Series or model	System acc	curacy	
	Angle encoders with	RCN 2000 series	± 5"/± 2.5"		28
	integral bearing and integrated stator	RON 200 series	± 5"/± 2.5"		30
	coupling	RCN 5000 series	± 5"/± 2.5"		32
		RON 785	± 2"		34
		RCN 8000 series	± 2"/± 1"	Ø 60 mm	36
				Ø 100 mm	38
		RON 786	± 2"		40
		RON 886/RPN 886	± 1"		70
		RON 905	± 0.4"		42
	Angle encoders with integral bearing and mounted stator coupling	ECN 200	± 10"		44
	Angle encoders	ROD 200 series	± 5"		48
	with integral bearing for separate	ROD 780	± 2"		50
	shaft coupling	ROD 880	± 1"		
ectrical connection					
	Interfaces and pin layouts	Incremental signals	\sim 1 V_{PP}		52
					53
		Absolute position values	EnDat		54
			Fanuc and M	Mitsubishi	55
	Cables and connecti	ng elements			56
	Diagnostic and testi	ng equipment			60
	Interface electronics				62

HEIDENHAIN angle encoders

The term angle encoder is typically used to describe encoders that have an accuracy of better than \pm 5" and a line count above 10000.


Angle encoders are found in applications requiring precision angular measurement to accuracies within several arc seconds.

Examples:

- Rotary tables on machine tools
- Swivel heads on machine tools
- C-axes of lathes
- Measuring machines for gears
- Printing units of printing machines
- Spectrometers
- Telescopes

etc

In contrast, rotary encoders are used in applications where accuracy requirements are less stringent, e.g. in automation, electrical drives, and many other applications.

The RCN 8000 angle encoder mounted on the rotary table of a machine tool

Angle encoders can have one of the following mechanical designs:

Angle encoders with integral bearing, hollow shaft and stator coupling

Because of the design and mounting of the stator coupling, it must absorb only that torque caused by friction in the bearing during angular acceleration of the shaft. These angle encoders therefore provide excellent dynamic performance. With a stator coupling, the stated system accuracy also includes deviations from the shaft coupling. The **RCN**, **RON** and **RPN** angle encoders have an integrated stator coupling, whereas the **ECN** has a stator coupling mounted on the outside.

Other advantages:

- Compact size for limited installation space
- Hollow shaft diameters up to 100 mm to provide space for power lines, etc.
- Simple installation

Selection guide for absolute angle encoders see pages 6/7 for incremental angle encoders see pages 8/9

ROD 880 incremental angle encoder with K 16 flat coupling

Angle encoders with integral bearing, for separate shaft coupling

ROD angle encoders with solid shaft are particularly suited to applications where higher shaft speeds and/or larger mounting tolerances are required. The shaft couplings allow axial tolerances of ± 1 mm.

Selection guide on pages 8/9

ERA 4000 incremental angle encoder

You can find more detailed information on our modular angle encoders on the Internet at www.heidenhain.de or in the Angle Encoders without Integral Bearing and Modular Magnetic Encoders catalogs.

Angle encoders without integral bearing

The **ERP, ERO** and **ERA** angle encoders without integral bearing (modular angle encoders) are intended for integration in machine elements or apparatuses. They are designed to meet the following requirements:

- Large hollow shaft diameters (up to 10 m with a scale tape)
- High shaft speeds up to 20000 min⁻¹
- No additional starting torque from shaft seals
- Segment versions

Selection guide on pages 10 to 13

Modular magnetic encoders

The robust **ERM** modular magnetic encoders are especially suited for use in production machines. The large inside diameters available, their small dimensions and the compact design of the scanning head predestine them for

- the C axis of lathes,
- simple rotary and tilting axes (e.g. for speed measurement on direct drives or for integration in gear stages), and
- spindle orientation on milling machines or auxiliary axes.

Selection guide on pages 12/13

Selection guideAbsolute angle encoders with integral bearing

Series	Overall dimensions in mm	System accuracy	Mechanically perm. speed	Position values per revolution	Interface
With integrated	l stator coupling				
RCN 2000	0,70	± 5"	≤ 1500 min ⁻¹	67 108 864 ≙ 26 bits	EnDat 2.2
	8				EnDat 2.2
					Fanuc αi
	55Ø 20				Mitsubishi
		± 2.5"		268435456 28 bits	EnDat 2.2
					EnDat 2.2
					Fanuc αi
					Mitsubishi
RCN 5000		± 5"	≤ 1500 min ⁻¹	67 108 864 ≙ 26 bits	EnDat 2.2
					EnDat 2.2
	42 Ø 35				Fanuc αi
					Mitsubishi
		± 2.5"		268435456 ≙ 28 bits	EnDat 2.2
					EnDat 2.2
					Fanuc αi
					Mitsubishi
RCN 8000		± 2"	≤ 500 min ⁻¹	536870912 ≙ 29 bits	EnDat 2.2
	88 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				EnDat 2.2
					Fanuc αi
	40 Ø 60				Mitsubishi
		± 1"			EnDat 2.2
	00700				EnDat 2.2
					Fanuc αi
	40 Ø 100				Mitsubishi
With mounted	stator coupling				
ECN 200		± 10"	≤ 3000 min ⁻¹	33554432 ≙ 25 bits	EnDat 2.2
					EnDat 2.2
	59 max. Ø D			8388608 ≙ 23 bits	Fanuc α
	D: 50 mm max.				Mitsubishi

Incremental signals	Signal periods per revolution	Model	Page
			•
\sim 1 V_{PP}	16384	RCN 2380	28
-	-	RCN 2310	
-	-	RCN 2390F	
-	-	RCN 2390M	
∼1 V _{PP}	16384	RCN 2580	
-	_	RCN 2510	
-	_	RCN 2590F	
-	_	RCN 2590M	
∼1 V _{PP}	32768	RCN 5380	32
-	_	RCN 5310	
-	_	RCN 5390F	
_	-	RCN 5390M	
~1 V _{PP}	32 768	RCN 5580	
-	_	RCN 5510	
-	_	RCN 5590F	
-	_	RCN 5590M	
∼1 V _{PP}	32768	RCN 8380	36
-	_	RCN 8310	
-	_	RCN 8390 F	
-	_	RCN 8390M	
∼1 V _{PP}	32768	RCN 8580	38
-	_	RCN 8510	
-	_	RCN 8590F	
-	-	RCN 8590M	
√ 1 V _{PP}	2048	ECN 225	44
-	_	ECN 225	
_	-	ECN 223F	
-	-	ECN 223 M	

RCN 2000

RCN 5000

RCN 8000 Ø 60 mm

RCN 8000 Ø 100 mm

ECN 200 Ø 50 mm

Selection guide

Incremental angle encoders with integral bearing

Series	Overall dimensions in mm	System accuracy	Mechanically permissible speed	Interface
With integrated	stator coupling			
RON 200	1 1 1 1 1 1 1 1 1 1	± 5"	≤ 3000 min ⁻¹	ГШТІ
				ГШП
	55 Ø 20			∼1 V _{PP}
		± 2.5"		∼1V _{PP}
RON 700	59 0 50	± 2"	≤ 1000 min ⁻¹	∼1V _{PP}
	40 Ø 60			∼ 1 V _{PP}
RON 800 RPN 800	40 0 60	± 1"	≤ 1000 min ⁻¹	~ 1 V _{PP}
RON 900	40 0 60	± 0.4"	≤ 100 min ⁻¹	11 μApp
For separate sha	aft coupling			
ROD 200	0.10	± 5"	≤ 10000 min ⁻¹	ГШПГ
				ГШТІ
	42.5 Ø 10			∼1 V _{PP}
ROD 700	0120	± 2"	≤ 1000 min ⁻¹	∼1 V _{PP}
ROD 800	49 0 14	± 1"	≤ 1000 min ⁻¹	∼1V _{PP}

¹⁾ After integrated interpolation

Signal periods per revolution	Model	Page
18000 ¹⁾	RON 225	30
180 000/90 000 ¹⁾	RON 275	
18000	RON 285	
18000	RON 287	
18000	RON 785	34
18000/36000	RON 786	40
36000	RON 886	40
180 000	RPN 886	
36000	RON 905	42
18000 ¹⁾	ROD 220	48
180 000 ¹⁾	ROD 270	
18000	ROD 280	
18000/36000	ROD 780	50
36000	ROD 880	

Selection guide

Angle encoders without integral bearing

Series	Version and mounting	Overall dimensions in mm	Diameter D1/D2	Accuracy of graduation	Mechanically permissible speed
Angle enco	ders with graduation	on glass disk			
ERP 880	Phase-grating graduation on glass disk with hub; screwed onto front of shaft	36.8	_	± 0.9"	≤ 1000 min ⁻¹
ERP 4000	Phase-grating graduation on glass disk with hub; screwed onto front of shaft	28.3	D1: 8 mm D2: 44 mm	± 2"	≤ 300 min ⁻¹
ERP 8000		ØD2	D1: 50 mm D2: 108 mm	± 1"	≤ 100 min ⁻¹
ERO 6000	METALLUR graduation on glass disk with hub; screwed onto front of shaft	26.1 Ø D2	D1: 25/95 mm D2: 71/150 mm	±3"/±2"	≤ 1600 min ⁻¹ / ≤ 800 min ⁻¹
ERO 6100	Chrome graduation on glass; screwed onto front of shaft	26.1 Ø D2	D1: 41 mm D2: 70 mm	± 10"	≤ 3500 min ⁻¹
Angle enco	ders with graduation	on steel scale drum			
ERA 4x80	Scale drum with centering collar; screwed onto front of shaft	46 19 20 20 12	D1: 40 mm to 512 mm D2: 76.5 mm to 560.46 mm	± 5" to ± 2"	≤ 10000 min ⁻¹ to ≤ 1500 min ⁻¹
ERA 4282	Scale drum for increased accuracy; screwed onto front of shaft		D1: 40 mm to 270 mm D2: 76.5 mm to 331.31 mm	± 4" to ± 1.7"	≤ 10 000 min ⁻¹ to ≤ 2500 min ⁻¹

¹⁾ Through integrated interpolation

Interface	Signal periods per revolution	Reference marks	Model	For more information
∼ 1 V _{PP}	180 000	One	ERP 880	Catalog: Angle Encoders Without Integral Bearing
∼1V _{PP}	131 072	None	ERP 4080	
∼1V _{PP}	360 000	None	ERP 8080	
∼ 1 V _{PP}	9000/ 18000	One	ERO 6080	
ГШПІ	45000 to 900000 ¹⁾	One	ERO 6070	
∼ 1 Vpp	4096	One	ERO 6180	
∼1V _{PP}	12 000 to 52 000	Distance- coded	ERA 4280C	Catalog: <i>Angle</i> <i>Encoders</i>
	6000 to 44000		ERA 4480C	Without Integral Bearing
	3000 to 13000		ERA 4880C	zoamig
∼1 V _{PP}	12 000 to 52 000	Distance- coded	ERA 4282 C	

Selection guide

Angle encoders without integral bearing and modular encoders

Series	Version and mounting	Overall dimensions in mm	Diameter	Accuracy of graduation	Mechanically permissible speed
Angle enco	oders with graduation or	steel tape			
ERA 7000	Steel scale tape for internal mounting, full circle version ¹⁾ ; scale tape is tensioned on the inside circumference	46	458.62 mm to 1146.10 mm	± 3.9" to ± 1.6"	≤ 250 min ⁻¹ to ≤ 220 min ⁻¹
ERA 8000	Steel scale tape for external mounting, full circle version 1); scale tape is tensioned on the outside circumference	26	458.11 mm to 1 145.73 mm	± 4.7" to ± 1.9"	Approx. ≤ 45 min ⁻¹
Modular e	ncoders with magnetic g	graduation			
ERM 2200	Steel scale drum with MAGNODUR graduation; fastened by axial screws	50 20	D1: 70 mm to 380 mm D2: 113.16 mm to 452.64 mm	± 7" to ± 2.5"	≤ 14500 min ⁻¹ to ≤ 3000 min ⁻¹
ERM 200	Steel scale drum with MAGNODUR graduation; fastened by axial screws	54 20	D1: 40 mm to 410 mm D2: 75.44 mm to 452.64 mm	± 11" to ± 3.5"	≤ 19000 min ⁻¹ to ≤ 3000 min ⁻¹
ERM 2410	Steel scale drum with MAGNODUR graduation; fastened by axial screws	50 20	D1: 40 mm to 410 mm D2: 75.44 mm to 452.64 mm	± 11" to ± 3.5"	≤ 19000 min ⁻¹ to ≤ 3000 min ⁻¹
ERM 2400	Steel scale drum with MAGNODUR graduation; friction-locked fastening by clamping the drum	50 0 20	D1: 40 mm to 100 mm D2: 64.37 mm to 128.75 mm	± 17" to ± 9"	42 000 min ⁻¹ to 20 000 min ⁻¹
	Steel scale drum with MAGNODUR graduation; friction-locked fastening by clamping the drum; additional slot for feather key as anti-rotation element		D1: 40 mm; 55 mm D2: 64.37 mm; 75.44 mm		≤ 33000 min ⁻¹ ; ≤ 27000 min ⁻¹
ERM 2900	Steel scale drum with MAGNODUR graduation; friction-locked fastening by clamping the drum	50 20 20 20	D1: 40 mm to 100 mm D2: 58.06 mm to 120.96 mm	± 68" to ± 33"	≤ 47000 min ⁻¹ to ≤ 16000 min ⁻¹

¹⁾ Segment versions upon request 2) The position value is generated internally from the incremental signals after traverse over two reference marks.

Interface	Signal periods per revolution	Reference marks	Model	For more information
∼1 V _{PP}	36000 to 90000	Distance- coded	ERA 7480C	Catalog: Angle Encoders Without Integral Bearing
∼1V _{PP}	36000 to 90000	Distance- coded	ERA 8480C	Ç
∼1V _{PP}	1800 to 7200	Distance- coded	ERM 2280	Catalog: Magnetic Modular Encoders
Г⊔ПГ	600 to 3600	One or distance-	ERM 220	
∼1 V _{PP}		coded	ERM 280	
EnDat 2.2 ²⁾	600 to 3600	Distance- coded	ERM 2410	
∼ 1V _{PP}	512 to 1024	One	ERM 2484	
∼1V _{PP}	512; 600		ERM 2485	
∼1V _{PP}	192 to 400	One	ERM 2984	

ERM 2200 ERM 2410

ERM 200

ERM 2400

ERM 2900

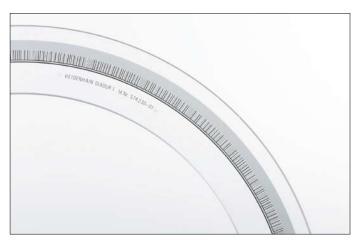
Measuring principles

Measuring standard

HEIDENHAIN encoders with optical scanning incorporate measuring standards of periodic structures known as graduations. These graduations are applied to a carrier substrate of glass or steel. The scale substrate for large measuring lengths is a steel tape.

HEIDENHAIN manufactures the precision graduations in specially developed, photolithographic processes.

- AURODUR: matte-etched lines on goldplated steel tape with typical graduation period of 40 µm
- METALLUR: contamination-tolerant graduation of metal lines on gold, with typical graduation period of 20 µm
- DIADUR: extremely robust chromium lines on glass (typical graduation period of 20 µm) or three-dimensional chromium structures (typical graduation period of 8 µm) on glass
- SUPRADUR phase grating: optically three dimensional, planar structure; particularly tolerant to contamination; typical graduation period of 8 µm and finer
- OPTODUR phase grating: optically three dimensional, planar structure with particularly high reflectance, typical graduation period of 2 µm and less


Along with these very fine grating periods, these processes permit a high definition and homogeneity of the line edges. Together with the photoelectric scanning method, this high edge definition is a precondition for the high quality of the output signals.

The master graduations are manufactured by HEIDENHAIN on custom-built high-precision dividing engines.


Absolute measuring method

With the absolute measuring method, the position value is available from the encoder immediately upon switch-on and can be called at any time by the subsequent electronics. There is no need to move the axes to find the reference position.

The absolute position information is read from the **graduated disk** which is formed from a serial absolute code structure. The code structure is unique over one revolution. A separate incremental track is read with the single-field scanning principle and interpolated for the position value.

Graduated disk with serial absolute code track and incremental track

Absolute and incremental circular scales and scale drums

Incremental measuring method

With the incremental measuring method, the graduation consists of a periodic grating structure. The position information is obtained **by counting** the individual increments (measuring steps) from some point of origin. Since an absolute reference is required to ascertain positions, the scales or scale tapes are provided with an additional track that bears a **reference mark**. The absolute position on the scale, established by the reference mark, is gated with exactly one measuring step. The reference mark must therefore be scanned to establish an absolute reference or to find the last selected datum.

In some cases, this may require rotation by up to nearly 360°. To speed and simplify such "reference runs," many HEIDENHAIN encoders feature **distance-coded reference marks**—multiple reference marks that are individually spaced according to a mathematical algorithm. The subsequent electronics find the absolute reference after traversing two successive reference marks—meaning only a few degrees of traverse (see nominal increment I in the table).

Encoders with distance-coded reference marks are identified with a "C" behind the model designation (e.g. RON 786C).

With distance-coded reference marks, the **absolute reference** is calculated by counting the signal periods between two reference marks and using the following formulas:

$$\alpha_1$$
 = (abs A-sgn A-1) $\times \frac{1}{2}$ + (sgn A-sgn D) $\times \frac{abs M_{RR}}{2}$

and

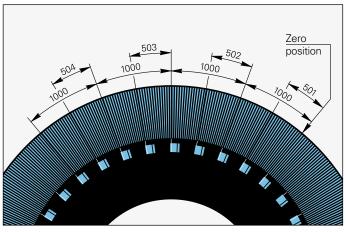
$$A = \frac{2 \times abs M_{RR} - I}{GP}$$

where:

 α₁ = Absolute angular position of the first traversed reference mark to the zero position in degrees

abs = Absolute value

sgn = Sign function ("+1" or "-1")


MRR = Measured distance between the traversed reference marks in degrees

 Nominal increment between two fixed reference marks (see table)

GP = Grating period $(\frac{360^{\circ}}{\text{Line count}})$

D = Direction of rotation (+1 or -1)
Rotation to the right (when viewing the mounting side of the angle encoder—see Mating dimensions) gives "+1"

Line count z	Number of reference marks	Nominal increment I
36000 18000	72 36	10° 20°
10000		20

Schematic representation of a circular scale with distance-coded reference marks

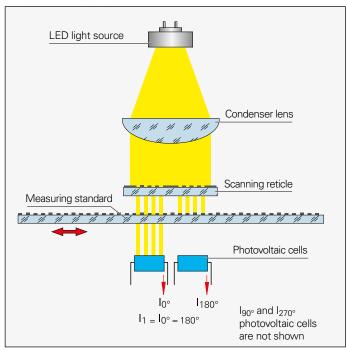
Photoelectric scanning

Most HEIDENHAIN encoders operate using the principle of photoelectric scanning. Photoelectric scanning of a measuring standard is contact-free, and as such, free of wear. This method detects even very fine lines, no more than a few microns wide, and generates output signals with very small signal periods.

The finer the grating period of a measuring standard is, the greater the effect of diffraction on photoelectric scanning. HEIDENHAIN uses two scanning principles with angle encoders:

- The imaging scanning principle for grating periods from 10 µm to approx.
 70 µm.
- The interferential scanning principle for very fine graduations with grating periods of 4 µm.

Imaging scanning principle


Put simply, the imaging scanning principle functions by means of projected-light signal generation: two graduations with equal grating periods—the circular scale and the scanning reticle—are moved relative to each other. The carrier material of the scanning reticle is transparent, whereas the graduation on the measuring standard may be applied to a transparent or reflective surface.

When parallel light passes through a grating, light and dark surfaces are projected at a certain distance. An index grating with the same grating period is located here. When the two gratings move relative to each other, the incident light is modulated. If the gaps in the gratings are aligned, light passes through. If the lines of one grating coincide with the gaps of the other, no light passes through.

Photovoltaic cells or a large-surface photovoltaic-cell array convert these variations in light intensity into electrical signals. The specially structured grating of the scanning reticle filters the light to generate nearly sinusoidal output signals. The smaller the period of the grating structure is, the closer and more tightly toleranced the gap must be between the scanning reticle and circular scale. Practical mounting tolerances for encoders with the imaging scanning principle are achieved with grating periods of 10 µm and larger.

The RCN, ECN, RON and ROD angle encoders with integral bearing operate according to the imaging scanning principle.

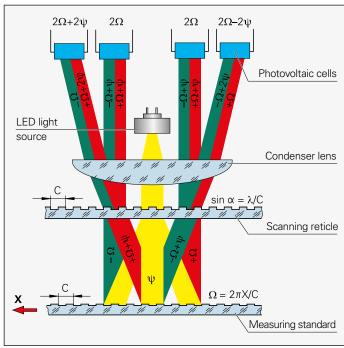
Imaging scanning principle

Interferential scanning principle

The interferential scanning principle exploits the diffraction and interference of light on a fine graduation to produce signals used to measure displacement.

A step grating is used as the measuring standard: reflective lines 0.2 µm high are applied to a flat, reflective surface. In front of that is the scanning reticle—a transparent phase grating with the same grating period as the scale.

When a light wave passes through the scanning reticle, it is diffracted into three partial waves of the orders –1, 0, and +1, with approximately equal luminous intensity. The waves are diffracted by the scale such that most of the luminous intensity is found in the reflected diffraction orders +1 and –1. These partial waves meet again at the phase grating of the scanning reticle where they are diffracted again and interfere. This produces essentially three waves that leave the scanning reticle at different angles. Photovoltaic cells convert this alternating light intensity into electrical signals.


A relative motion of the scanning reticle to the scale causes the diffracted wave fronts to undergo a phase shift: when the grating moves by one period, the wave front of the first order is displaced by one wavelength in the positive direction, and the wavelength of diffraction order –1 is displaced by one wavelength in the negative direction. Since the two waves interfere with each other when exiting the grating, the waves are shifted relative to each other by two wavelengths. This results in two signal periods from the relative motion of just one grating period.

Interferential encoders function with average grating periods of 4 µm and finer. Their scanning signals are largely free of harmonics and can be highly interpolated. These encoders are therefore especially suited for high resolution and high accuracy. Even so, their generous mounting tolerances permit installation in a wide range of applications.

The RPN 886 angle encoder with integral bearing operates according to the interferential scanning principle.

Interferential scanning principle (optics schematics)

- C Grating period
- Ψ Phase shift of the light wave when passing through the scanning reticle
- $\boldsymbol{\Omega}$ Phase shift of the light wave due to motion X of the scale

Measuring accuracy

The accuracy of angular measurement is mainly determined by

- the quality of the graduation,
- the quality of the scanning process,
- the quality of the signal processing electronics,
- the eccentricity of the graduation to the bearing,
- the error of the bearing,
- the coupling to the measured shaft, and
- the elasticity of the stator coupling (RCN, ECN, RON, RPN) or shaft coupling (ROD)

These factors of influence are comprised of encoder-specific error and application-dependent issues. All individual factors of influence must be considered in order to assess the attainable **total accuracy**.

Error specific to the measuring device

For angle encoders with integral bearing, the error that is specific to the measuring device is shown in the Specifications as the **system accuracy**.

The extreme values of the total deviations of a position are—referenced to their mean value—within the system accuracy \pm a.

The system accuracy reflects position errors within one revolution as well as those within one signal period and—for angle encoders with stator coupling—the errors of the shaft coupling.

Position error within one signal period

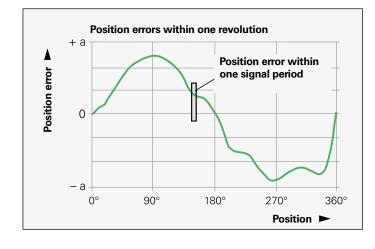
Position errors within one signal period are considered separately, since they already have an effect even in very small angular motions and in repeated measurements. They especially lead to speed ripples in the speed control loop.

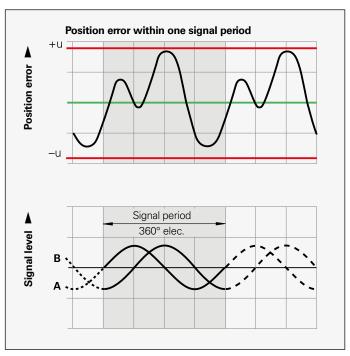
The position error within one signal period \pm u results from the quality of the scanning and—for encoders with integrated pulse-shaping or counter electronics—the quality of the signal-processing electronics. For encoders with sinusoidal output signals, however, the errors of the signal processing electronics are determined by the subsequent electronics.

The following individual factors influence the result:

- The length of the signal period
- The homogeneity and period definition of the graduation
- The quality of scanning filter structures
- The characteristics of the detectors
- The stability and dynamics of further processing of the analog signals

These errors are considered when specifying the position error within one signal period.


The position error within one signal period $\pm u$ is indicated in the specifications of the angle encoders.


As the result of increased reproducibility of a position, much smaller measuring steps are still useful.

Application-dependent error

For **angle encoders with integral bearing** the specified system accuracy already includes the error of the bearing. For angle encoders with separate **shaft coupling** (ROD), the angle error of the coupling must be added (see *Mechanical design types and mounting* — *ROD*). For angle encoders with **stator coupling** (RCN, ECN, ROP, RPN), the system accuracy already includes the error of the shaft coupling.

In contrast, the mounting and adjustment of the scanning head normally have a significant effect on the accuracy that can be achieved by **encoders without integral bearings**. Of particular importance are the mounting eccentricity of the graduation and the radial runout of the measured shaft. The application-dependent error values must be measured and calculated individually in order to evaluate the **total accuracy** of such encoders (see the *Angle Encoders without Integral Bearing* catalog).

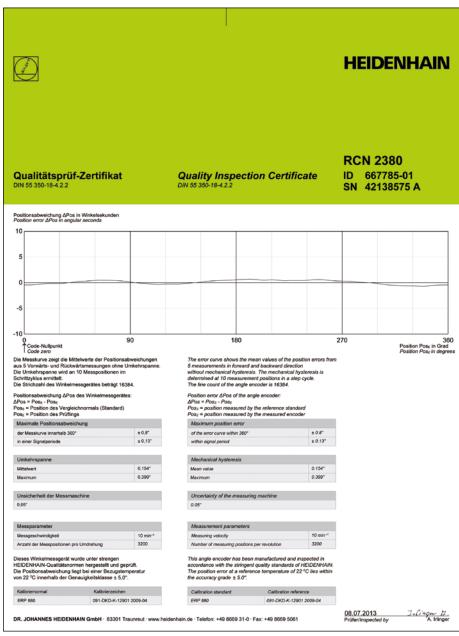
Calibration chart

For its angle encoders with integral bearings, HEIDENHAIN prepares individual Quality Inspection Certificates and ships them with the encoder.

The Quality Inspection Certificate

documents the system accuracy, which is ascertained through five forward and five backward measurements. The measuring positions per revolution are chosen to determine very exactly not only the longrange error, but also the position error within one signal period.

The **mean value curve** shows the arithmetic mean of the measured values, in which the mechanical hysteresis is not included.


The **mechanical hysteresis** depends on the shaft coupling. On angle encoders with stator coupling—RCN, ECN, RPN and RPN—it is determined at ten measuring positions in forward and backward steps. The maximum value and arithmetic mean are documented on the calibration chart. The following limits apply to the mechanical hysteresis:

RCN 2xxx/RON 2xx: ≤ 0.6 "

RCN 5xxx: $\leq 0.6''$ **ECN 2xx**: $\leq 2''$ **RON 7xx**: $\leq 0.4''$


RCN 8xxx/RON/RPN 8xx: ≤ 0.4"

The **calibration standard** indicated in the Quality Inspection Certificate documents and guarantees traceability to recognized national and international standards.

Example

Determination of the reversal error with forward and backward measurements

Mechanical design types and mounting

RCN, ECN, RON, RPN

RCN, ECN, RON and **RPN** angle encoders have an integral bearing, hollow shaft and a coupling on the stator side. The measured shaft is directly connected with the shaft of the angle encoder.

Structure

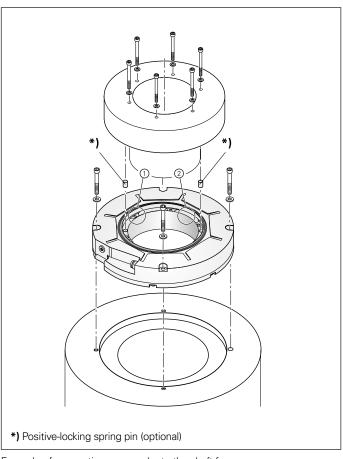
The graduated disk is rigidly affixed to the hollow shaft. The scanning unit rides on the shaft on ball bearings and is connected to the housing with a coupling on the stator side. The stator coupling and the sealing design greatly compensate axial and radial mounting errors without restricting function or accuracy. This permits relatively large mounting tolerances to facilitate mounting, especially for the RCN. During angular acceleration of the shaft, the coupling must absorb only that torque caused by friction in the bearing. Angle encoders with stator coupling therefore provide excellent dynamic performance.

Mounting

The housing of the RCN, ECN, RON and RPN is firmly connected to the stationary machine part with an integral mounting flange and a centering collar.

Shaft coupling for RCN, ECN (Ø 20 mm), RON, RPN

Shaft coupling with ring nut


The shaft is a hollow through shaft. For installation, the hollow through shaft of the angle encoder is placed over the machine shaft, and is fixed with a ring nut from the front of the encoder. The ring nut can easily be tightened with the mounting aid.

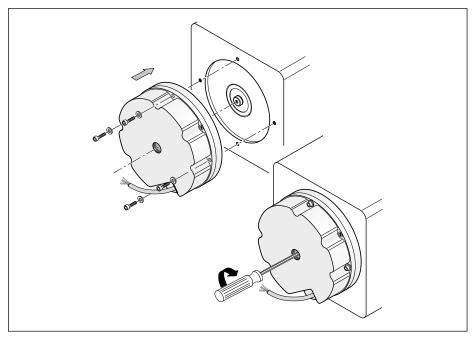
Front end shaft coupling

It is often advantageous, especially with rotary tables, to integrate the angle encoder in the table so that it is freely accessible when the rotor is lifted. The hollow shaft is connected by threaded holes on the front end with the aid of special mounting elements adapted to the respective design (not included in delivery). To comply with radial and axial runout specifications, the internal bore ① and the shoulder surface ② are to be used as mounting surfaces for shaft coupling at the front of the encoder. In addition, positive-locking spring pins can be used on the rotor side for the RCN.



Mounting an angle encoder with a ring nut

Example of connecting an encoder to the shaft face


• Shaft coupling for ECN 200 (Ø 50 mm) The ECN 200 is slid by its hollow shaft onto the measured shaft, and the rotor is fastened by three eccentric clamps.

Mounting an ECN 200 with \varnothing 50 mm hollow shaft

• Shaft coupling for RON 905

The RON 905 has a bottomed hollow shaft. The shaft is connected by an axial central screw.

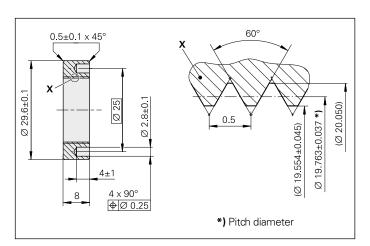
Mounting an RON 905

Materials to be used

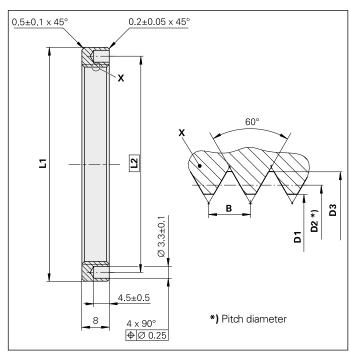
The machine shaft and the fastening components must be made of steel. The material must have a coefficient of thermal expansion value of α = (10 to 16) x 10⁻⁶ K⁻¹. Additionally, the material must meet the following specifications:

- Hollow-shaft connection
 - $R_m \ge 650 \text{ N/mm}^2$

 - $R_{p0.2} \ge 500 \text{ N/mm}^2$ (with positive lock) $R_{p0.2} \ge 370 \text{ N/mm}^2$ (without positive lock)
- Housing connection R_{p0.2} ≥ 370 N/mm²


Ring nuts for RCN, ECN 200 (\varnothing 20 mm), RON and RPN

HEIDENHAIN offers special ring nuts for the RCN, ECN 200 (Ø 20 mm), RON and RPN encoders. Choose the tolerance of the shaft thread such that the ring nut can be tightened easily, with a minor axial play. This guarantees that the load is evenly distributed on the shaft connection, and prevents distortion of the encoder's hollow shaft.



Ring nut for

Hollow shaft Ø 20 mm: ID 336669-03 Hollow shaft Ø 35 mm: ID 336669-17 Hollow shaft Ø 50 mm: ID 336669-15 Hollow shaft Ø 60 mm: ID 336669-11 Hollow shaft Ø 100 mm: ID 336669-16

Ring nut for hollow shaft Ø 20 mm

Ring nut for hollow shaft Ø 35 mm Ø 50 mm Ø 60 mm Ø 100 mm

Ring nut for	L1	L2	D1	D2	D3	В
Hollow shaft Ø 35	Ø 46±0.2	Ø 40	(Ø 34.052 ±0.075)	Ø 34.463 ±0.053	(Ø 35.24)	1
Hollow shaft Ø 50	Ø 62±0.2	Ø 55	(Ø 49.052 ±0.075)	Ø 49.469 ±0.059	(Ø 50.06)	1
Hollow shaft Ø 60	Ø 70±0.2	Ø 65	(Ø 59.052 ±0.075)	Ø 59.469 ±0.059	(Ø 60.06)	1
Hollow shaft Ø 100	Ø 114±0.2	Ø 107	(Ø 98.538 ±0.095)	(Ø 99.163 ±0.07)	(Ø 100.067)	1.5

Mounting aid for HEIDENHAIN ring nuts

The mounting aid is used to tighten the ring nut. Its pins lock into the holes in the ring nut. A torque wrench provides the necessary tightening torque.

Mounting aid for ring nuts with

Hollow shaft Ø 20 mm: ID 530334-03 Hollow shaft Ø 35 mm: ID 530334-17 Hollow shaft Ø 50 mm: ID 530334-15 Hollow shaft Ø 60 mm: ID 530334-11 Hollow shaft Ø 100 mm: ID 530334-16

PWW inspection tool for RCN/RON/RPN angle encoders

The PWW makes it possible to simply and quickly inspect the most significant mating dimensions. The integrated measuring equipment measures position and radial runout, for example. It is best suited for the shaft coupling with ring nut.

PWW for

Hollow shaft Ø 20 mm:	ID 516211-01
Hollow shaft Ø 35 mm:	ID 516211-06
Hollow shaft Ø 50 mm:	ID 516211-02
Hollow shaft Ø 60 mm:	ID 516211-03
Hollow shaft Ø 100 mm:	ID 516211-05

Inspection tool (PWW)

ROD

Angle encoders of the **ROD** product family require a separate coupling for connection to the drive shaft. The shaft coupling compensates axial movement and misalignment between the shafts, preventing excessive load on the bearing of the angle encoder. It is important that the encoder shaft and the drive shaft be optimally aligned for high measurement accuracies to be realized. The HEIDENHAIN product program includes diaphragm couplings and flat couplings designed for connecting the shaft of the ROD angle encoder to the drive shaft.

Mounting

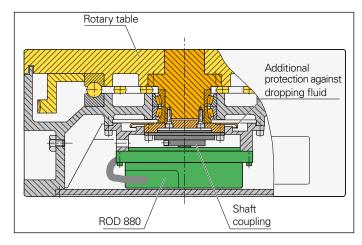
ROD angle encoders are provided with an integral mounting flange with centering collar. The encoder shaft is connected to the drive shaft by way of a diaphragm coupling or flat coupling.

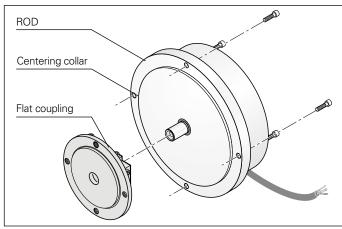
Shaft couplings

The shaft coupling compensates axial movement and misalignment between the encoder shaft and the drive shaft, preventing excessive load on the encoder bearing of the angle encoder.

Radial offset λ

Angular error α


Axial motion $\boldsymbol{\delta}$



Mounting an ROD with flat coupling

Mounting example

ROD 880

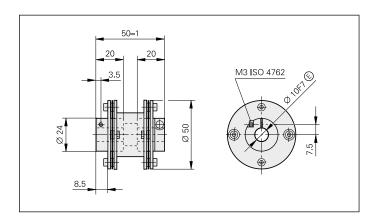
	ROD 200 series		ROD 700 series, ROD 800 series			
Shaft coupling	K 03 Diaphragm coupling	K 18 Flat coupling	K 01 Diaphragm coupling	K 15 Flat coupling	K 16 Flat coupling	
Hub bore	10 mm 14 mm					
Kinematic transfer error	$\pm 2''$ at $\lambda \le 0.1$ mm and α	± 3 " ± 1 " ± 0.5 " at $\lambda \le 0.0$		\pm 0.5" at $\lambda \le$ 0.05 mm and	mm and $\alpha \le 0.03^{\circ}$	
Torsional rigidity	1 500 Nm/rad	1200 Nm/rad	4000 Nm/rad	6000 Nm/rad	4000 Nm/rad	
Permissible torque	0.2 Nm 0.5 Nm					
Perm. radial offset λ	≤ 0.3 mm					
Perm. angular error α	≤ 0.5°			≤ 0.2°	≤ 0.5°	
Perm. axial offset δ	≤ 0.2 mm		≤ 0.1 mm	≤ 1 mm		
Moment of inertia (approx.)	20 · 10 ⁻⁶ kgm ²	75 · 10 ⁻⁶ kgm ²	200 · 10 ⁻⁶ kgm ²		400 · 10 ⁻⁶ kgm ²	
Permissible speed	10000 min ⁻¹	1000 min ⁻¹	3000 min ⁻¹	1000 min ⁻¹		
Torque for locking screws	Approx. 1.2 Nm Approx. 2.5 Nm		Approx. 2.5 Nm	Approx. 1.2 Nm		
Weight	100 g	117 g	180 g	250 g	410 g	

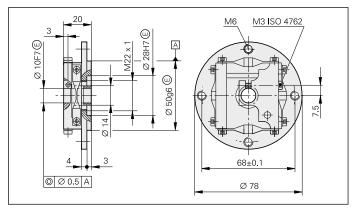
Diaphragm coupling K 03

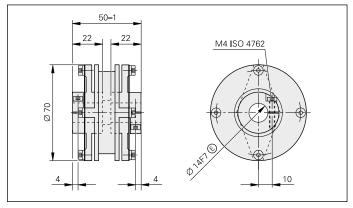
ID 200313-04

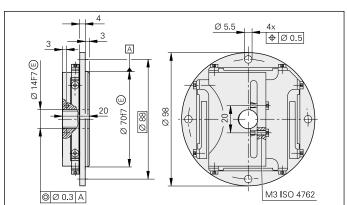
Flat coupling K 18 ID 202227-01

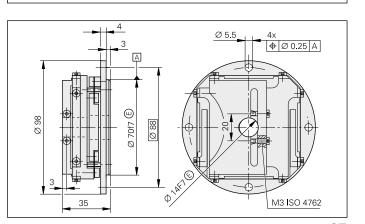
Diaphragm coupling K 01 ID 200301-02

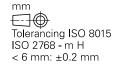



Flat coupling K 15 ID 255797-01




Flat coupling K 16 ID 258878-01





General mechanical information

Degree of protection

Unless otherwise indicated, all RCN, ECN, RON, RPN and ROD angle encoders meet protection standard IP67 according to EN IEC 60529. This includes housings and cable outlets. The **shaft inlet** provides protection to IP 64.

Splash water should not contain any substances that would have harmful effects on the encoder parts. If the protection to IP 64 of the shaft inlet is not sufficient (such as when the angle encoder is mounted vertically), additional labyrinth seals should be provided.

RCN, RON, RPN and ROD angle encoders are equipped with a compressed air inlet. Connection to a source of compressed air slightly above atmospheric pressure generates **sealing air** and provides additional protection against contamination.

The compressed air introduced directly onto the encoders must be cleaned by a micro filter, and must comply with the following quality classes as per **ISO 8573-1** (2010 edition):

• Solid contaminants: Particle size	Class 1 Number of
	particles per m ³
0.1 μm to 0.5 μm	≤ 20000
0.5 μm to 1.0 μm	≤ 400
1.0 µm to 5.0 µm	≤ 10
• Max. pressure dewpoin	t: Class 4

(pressure dewpoint at 3 °C)
 Total oil content: Class 1
 (max. oil concentration: 0.01 mg/m³)

For optimum supply of sealing air to the angle encoders with integral bearing, the required air flow is 1 to 4 l/min per encoder. Ideally the air flow is regulated by the HEIDENHAIN connecting pieces with integrated throttle (see *Accessories*). At an inlet pressure of approx. 1 · 10⁵ Pa (1 bar), the throttles ensure the prescribed volume of airflow.

Accessory:

DA 400 compressed air unit ID 894602-01

DA 400

HEIDENHAIN offers the DA 400 compressed-air filter system for purifying the compressed air. It is designed specifically for the introduction of compressed air into encoders.

The DA 400 consists of three filter stages (prefilter, fine filter and activated carbon filter) and a pressure regulator with pressure gauge. The pressure gauge and the automatic pressure switch (which is available as an accessory) effectively monitor the sealing air.

The compressed air introduced into the DA 400 must fulfill the requirements of the following purity classes as per ISO 8573-1 (2010 edition):

 (pressure dewpoint at 10 °C)
 Total oil content: Class 4 (max. oil concentration: 5 mg/m³) Necessary for connection to angle encoders:

Connecting piece

For tubing 6 x 1 With throttle and gasket For air-flow rate from 1 to 4 l/min ID 207835-04

Also suitable:

Swiveling screw fitting 90° With seal ID 207834-02

For more information, ask for our *DA 400* Product Information sheet.

Temperature range

The angle encoders are inspected at a **reference temperature** of 22 °C. The system accuracy given in the calibration chart applies at this temperature.

The **operating temperature range** indicates the ambient temperature limits between which the angle encoders will function properly.

The **storage temperature range** of -20 °C to +70 °C applies when the unit remains in its packaging. The storage temperature for the RPN 886 and RON 905 must remain between -10 °C and +50 °C.

Protection against contact

After encoder installation, all rotating parts (shaft coupling on ROD, locking ring on RCN, ECN, RON and RPN) must be protected against accidental contact during operation.

Acceleration

Angle encoders are subject to various types of acceleration during operation and mounting.

- The permissible angular acceleration of the rotor for the RCN/ECN/RON/RPN angle encoders is 1000 rad/s².
 For the ROD angle encoders, the permissible angular acceleration varies depending on the shaft coupling and the mating shaft (details upon request).
- The indicated maximum values for vibration apply for frequencies of 55 Hz to 2000 Hz (EN 60068-2-6), except when mechanical resonance arises.
- The maximum permissible acceleration values (semi-sinusoidal shock) for shock and impact are valid for 6 ms (EN 60068-2-27). 1000 m/s² (ROD 780/880: 300 ms²) must not be exceeded during shipping. The corresponding values for operation are listed in the specifications.

Under no circumstances should a hammer or similar implement be used to adjust or position the encoder.

Natural frequency f_N of coupling

The rotor and shaft coupling of the ROD angle encoders, as well as the stator and stator coupling of the RCN, ECN, RON and RPN angle encoders, form a single vibrating spring-mass system.

The **natural frequency f_N** should be as high as possible. For RCN, ECN, RON and RPN angle encoders, the frequency ranges given in the respective specifications are those where the natural frequencies of the encoders do not cause any significant position deviations in the measuring direction. A prerequisite for the highest possible natural frequency on **ROD angle encoders** is the use of a **shaft coupling** with a high torsional rigidity C.

$$f_N = \frac{1}{2 \, \cdot \, \pi} \cdot \, \sqrt{\frac{C}{I}}$$

f_N: Natural frequency in Hz

C: Torsional rigidity of the shaft coupling in Nm/rad

I: Moment of inertia of the rotor in kgm²

If radial and/or axial acceleration occurs during operation, the effect of the rigidity of the encoder bearing, the encoder stator and the coupling are also significant. If such loads occur in your application, HEIDENHAIN recommends consulting with the main facility in Traunreut.

Conditions for longer storage times

HEIDENHAIN recommends the following in order to make storage times beyond 12 months possible:

- Leave the encoders in the original packaging.
- The storage location should be dry, free of dust, and temperature-regulated. It should also not be subjected to vibrations, mechanical shock or chemical influences.
- For encoders with integral bearing, every 12 months (e.g. as run-in period) the shaft should be turned at low speeds, without axial or radial loads, so that the bearing lubricant redistributes itself evenly again.

Expendable parts

HEIDENHAIN encoders contain components that are subject to wear, depending on the application and handling. These include in particular the following parts:

- LED light source
- Cables with frequent flexing Additionally for encoders with integral bearing:
- Bearing
- Shaft sealing rings for rotary and angular encoders
- Sealing lips for sealed linear encoders

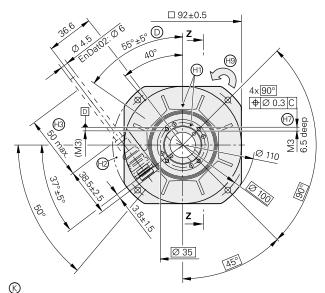
System tests

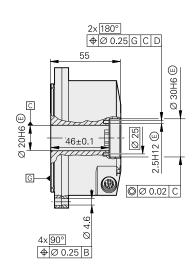
of the encoder.

Encoders from HEIDENHAIN are usually integrated as components in larger systems. Such applications require comprehensive tests of the entire system regardless of the specifications

The specifications shown in this brochure apply to the specific encoder, not to the complete system. Any operation of the encoder outside of the specified range or for any other than the intended applications is at the user's own risk.

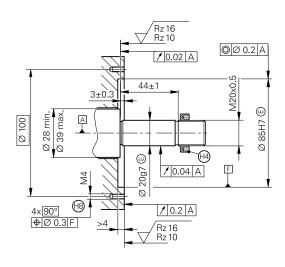
In safety-related systems, the higherlevel system must verify the position value of the encoder after switch-on.

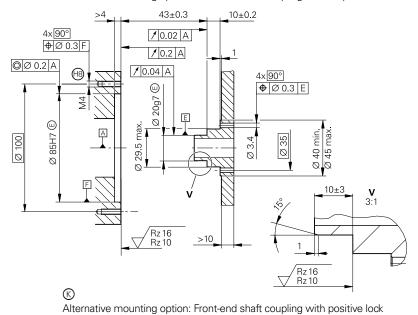

Mounting


Work steps to be performed and dimensions to be maintained during mounting are specified solely in the mounting instructions supplied with the unit. All data in this catalog regarding mounting are therefore provisional and not binding; they do not become terms of a contract.

RCN 2000 series

- Integrated stator coupling
- Hollow through shaft Ø 20 mm
- System accuracy ± 2.5" and ± 5"





Shaft coupling with ring nut

(S) Alternative mounting option: Front-end shaft coupling without positive lock

mm
Tolerancing ISO 8015
ISO 2768 - m H
< 6 mm: ±0.2 mm

■ = Bearing of mating shaft

① = Compressed air inlet

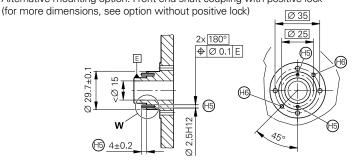
® = Required mating dimensions

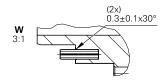
 $\Theta = \text{Mark for } 0^{\circ} \text{ position } \pm 5^{\circ}$

 Θ = Free space for customer

Cable support

(19) = Accessory: Ring nut ID 336669-03


(e) = 2x positive-locking spring pin, ISO 8752 – 2.5x10 – St (optional)

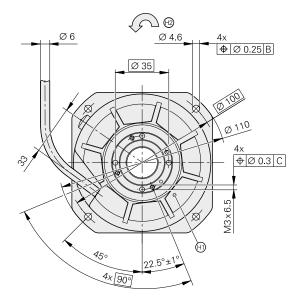

(M3) When using spring pins, provide additional back-off threads

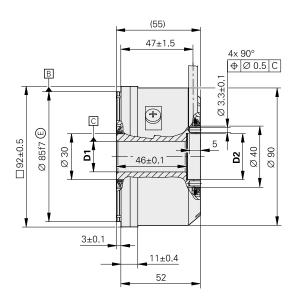
 Θ = Screw penetration 4.5 ± 0.5 mm

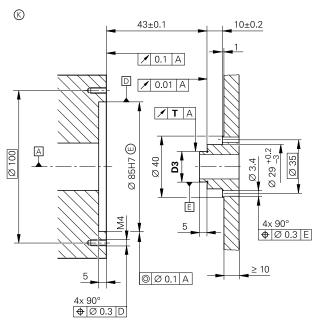
⊕ = Screw penetration 8.5 ± 0.5 mm

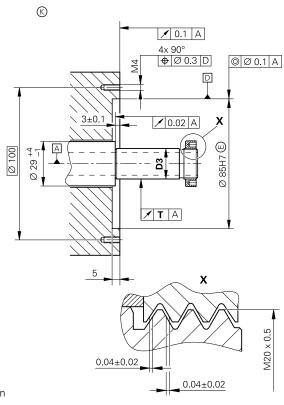
(9) = Direction of shaft rotation for output signals as per the interface description

	Absolute RCN 2510 RCN 2310	RCN 2580 RCN 2380	RCN 2590 F RCN 2390 F	RCN 2590 M RCN 2390 M		
Measuring standard	DIADUR circular scale wit	th absolute and incrementa	al track (16384 lines)			
System accuracy	RCN 25x0: ± 2.5" RCN 23x0: ± 5"					
Position error per signal period	$RCN\ 25x0$: $\leq \pm 0.3$ " $RCN\ 25x0$: $\leq \pm 0.4$ " $RCN\ 23x0$: $\leq \pm 0.4$ " $RCN\ 23x0$: $\leq \pm 0.4$ "					
Interface	EnDat 2.2		Fanuc serial interface αi Interface	Mitsubishi high speed interface		
Ordering designation	EnDat22	EnDat02	Fanuc05	Mit03-4		
Position values per revolution		RCN 25x0: 268 435 456 (28 bits) RCN 23x0: 67 108 864 (26 bits)				
Elec. permissible speed	≤3000 min ⁻¹ for continuous position value	≤ 1500 min ⁻¹ for continuous position value	≤ 3000 min ⁻¹ for continuous position value			
Clock frequency	≤ 16 MHz	≤ 2 MHz	-			
Calculation time t _{cal}	≤ 5 µs		_			
Incremental signals	_	∼1 V _{PP}	_			
Cutoff frequency –3 dB	_	≥ 400 kHz	-			
Electrical connection	Separate adapter cable connectable to encoder via quick disconnect					
Cable length ¹⁾	≤ 150 m		≤ 50 m	≤ 30 m		
Power supply	3.6 to 14 V DC					
Power consumption ²⁾ (maximum)	3.6 V: ≤ 1.1 W 14 V: ≤ 1.3 W					
Current consumption (typical)	5 V: ≤ 140 mA (without load)					
Shaft	Hollow through shaft D = 20 mm					
Mech. permissible speed	≤ 1500 min ⁻¹ ; temporary: ≤ 3000 min ⁻¹ (speeds over 1500 min ⁻¹ require consultation)					
Starting torque	≤ 0.08 Nm at 20 °C					
Moment of inertia of rotor	188 · 10 ⁻⁶ kgm ²					
Permissible axial motion of measured shaft	± 0.3 mm					
Natural frequency	≥ 1000 Hz					
Vibration 55 to 2000 Hz Shock 6 ms	\leq 200 m/s ² (EN 60 068-2-6) \leq 200 m/s ² (EN 60 068-2-27)					
Operating temperature	RCN 25xx: 0 °C to 50 °C; RCN 23xx: -20 °C to 60 °C					
Protection EN 60529	IP 64					
Weight	Approx. 1.0 kg					
With HEIDENHAIN cable	2) San Canadal alastrias	al information in the Interfac	f [[D[N]] A N] [and and bear drawn		


¹⁾ With HEIDENHAIN cable


²⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure


RON 200 series


- Integrated stator coupling
- Hollow through shaft Ø 20 mm
- System accuracy ± 2.5" and ± 5"

Cable radial, also usable axially

 \triangle = Bearing

© = Required mating dimensions

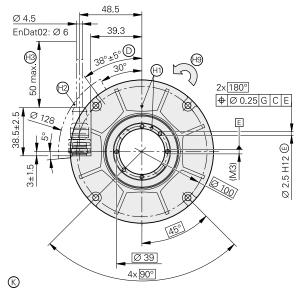
 Θ = Position of the reference-mark signal $\pm 5^{\circ}$

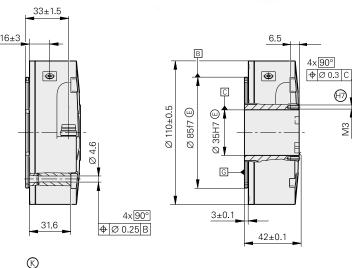
@ = Direction of shaft rotation for output signals as per the interface description

Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

System accuracy	± 2.5"	± 5"
D1	Ø 20H6 ©	Ø 20H7 ©
D2	Ø 30H6 ©	Ø 30H7 ©
D3	Ø 20g6 ©	Ø 20g7 ©
Т	0.01	0.02

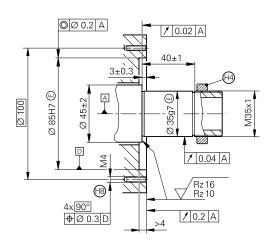
	Incremental RON 225	RON 275	RON 275	RON 285	RON 287
Measuring standard	DIADUR circular scale with incremental track				
Line count	9000 18000				
System accuracy	± 5" ± 2.5"			± 2.5"	
Position error per signal period	$\leq \pm 1.4" \qquad \qquad \leq \pm 0.7"$				
Interface	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□				
Integrated interpolation* Output signals/rev	2-fold 18000	5-fold 90000	10-fold 180 000	-	
Reference mark*	One RON 2xx: One RON 2xxC: Distance-coded			ance-coded	
Cutoff frequency –3 dB Output frequency Edge separation a	- ≤ 1 MHz ≥ 0.125 μs	- ≤ 250 kHz ≥ 0.96 μs	– ≤ 1 MHz ≥ 0.22 μs	≥ 180 kHz - -	
Elec. permissible speed	-	≤ 166 min ⁻¹	≤ 333 min ⁻¹	-	
Electrical connection*	Cable 1 m, with or without M23 coupling (male, 12-pin)				
Cable length ¹⁾	≤ 50 m			≤ 150 m	
Power supply	5 V DC ± 0.25 V/≤ 150 mA (without load)				
Shaft	Hollow through shaft D = 20 mm				
Mech. permissible speed	≤ 3000 min ⁻¹				
Starting torque	≤ 0.08 Nm at 20 °C				
Moment of inertia of rotor	$73 \cdot 10^{-6} \text{ kgm}^2$				
Permissible axial motion of measured shaft	± 0.1 mm				
Natural frequency	≥ 1200 Hz				
Vibration 55 to 2000 Hz Shock 6 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 200 m/s ² (EN 60068-2-27)				
Operating temperature	Frequent flexing: Stationary cable:	–10 °C to 70 °C –20 °C to 70 °C			0 °C to 50 °C
Protection EN 60529	IP 64				
Weight	Approx. 0.8 kg				

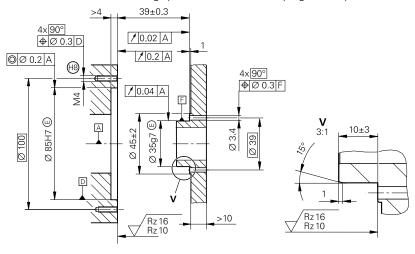

^{*} Please select when ordering


1) With HEIDENHAIN cable

RCN 5000 series

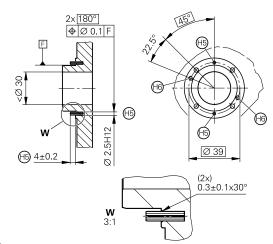
- · Integrated stator coupling
- Hollow through shaft Ø 35 mm
- System accuracy ± 2.5" and ± 5"





Shaft coupling with ring nut

Alternative mounting option: Front-end shaft coupling without positive lock

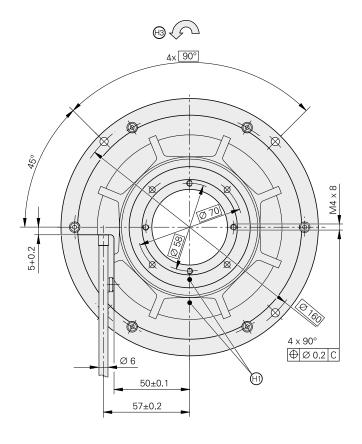


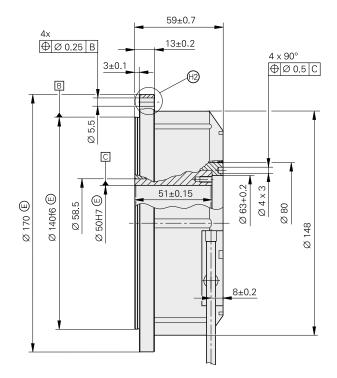
Alternative mounting option: Front-end shaft coupling with positive lock (for more dimensions, see option without positive lock)

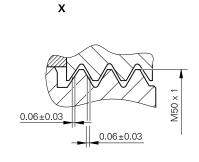
- = Bearing of mating shaft
- © = Compressed air inlet
- © = Required mating dimensions
- $\Theta = Mark for 0^{\circ} position \pm 5^{\circ}$
- Θ = Free space for customer
- ⊕ = Cable support
- (9) = Accessory: Ring nut ID 336669-17
- (optional)

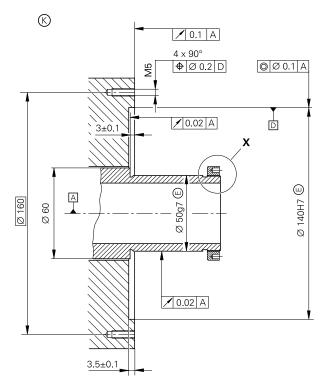
 © = 2x positive-locking spring pin, ISO 8752 2.5x10 St (optional)
- (M3) When using spring pins, provide additional back-off threads
- Θ = Screw penetration 4.5 ± 0.5 mm
- Θ = Screw penetration 8 ± 0.5 mm
- (9) = Direction of shaft rotation for output signals as per the interface description

	Absolute RCN 5510 RCN 5310	RCN 5580 RCN 5380	RCN 5590 F RCN 5390 F	RCN 5590 M RCN 5390 M
Measuring standard	DIADUR circular scale with absolute and incremental track (16384 lines)			
System accuracy	RCN 55x0: ± 2.5" RCN 53x0: ± 5"			
Position error per signal period	$RCN 55x0$: $\leq \pm 0.3$ " $RCN 55x0$: $\leq \pm 0.4$ " $RCN 53x0$: $\leq \pm 0.4$ " $RCN 53x0$: $\leq \pm 0.4$ "			
Interface	EnDat 2.2		Fanuc serial interface αi Interface	Mitsubishi high speed interface
Ordering designation	EnDat22	EnDat02	Fanuc05	Mit03-4
Position values per revolution	RCN 55x0: 268435456 (28 bits) RCN 53x0: 67 108864 (26 bits)			
Elec. permissible speed	≤ 3 000 min ⁻¹ for continuous position value	$\leq 1500 \text{ min}^{-1} \text{ for continuous position value}$ $\leq 3000 \text{ min}^{-1} \text{ for continuous position value}$		uous position value
Clock frequency	≤ 16 MHz	≤ 2 MHz	_	
Calculation time t _{cal}	≤ 5 µs		_	
Incremental signals	_	∼ 1 V _{PP}	_	
Cutoff frequency –3 dB	_	≥ 400 kHz	_	
Electrical connection	Separate adapter cable connectable to encoder via quick disconnect			
Cable length ¹⁾	≤ 150 m ≤ 50 m ≤ 30 m			≤ 30 m
Power supply	3.6 to 14 V DC			
Power consumption ²⁾ (maximum)	3.6 V: ≤ 1.1 W 14 V: ≤ 1.3 W			
Current consumption (typical)	5 V: ≤ 140 mA (without load)			
Shaft	Hollow through shaft D = 35 mm			
Mech. permissible speed	≤ 1500 min ⁻¹ ; temporary: ≤ 3000 min ⁻¹ (speeds over 1500 min ⁻¹ require consultation)			
Starting torque	≤ 0.2 Nm at 20 °C			
Moment of inertia of rotor	$140 \cdot 10^{-6} \text{kgm}^2$			
Permissible axial motion of measured shaft	± 0.3 mm			
Natural frequency	≥ 1 000 Hz			
Vibration 55 to 2000 Hz Shock 6 ms	\leq 200 m/s ² (EN 60068-2-6) \leq 200 m/s ² (EN 60068-2-27)			
Operating temperature	RCN 55xx: 0 °C to 50 °C; RCN 53xx: −20 °C to 60 °C			
Protection EN 60529	IP 64			
Weight	Approx. 0.9 kg			
1) With HEIDENHAIN cable	2) See General electrics	al information in the Interfa	ces for HEIDENHAIN Enc	rodore brochuro


¹⁾ With HEIDENHAIN cable


²⁾ See General electrical information in the Interfaces for HEIDENHAIN Encoders brochure

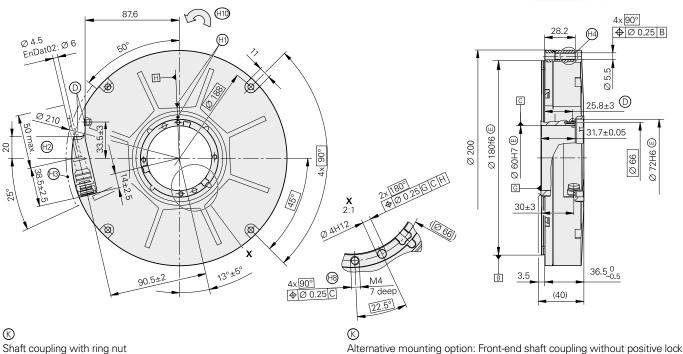

RON 785

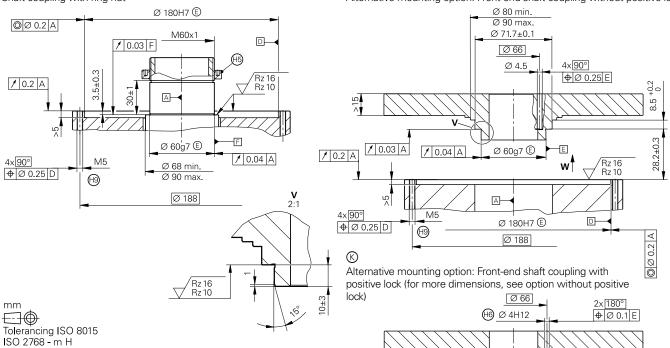

- Integrated stator coupling
- Hollow through shaft Ø 50 mm
- System accuracy ± 2"

Cable radial, also usable axially

- = Bearing of mating shaft
- ® = Required mating dimensions
- \oplus = Position of the reference-mark signal $\pm 5^{\circ}$
- @ = Shown rotated by 45°
- ⊕ = Direction of shaft rotation for output signals as per the interface description

	Incremental RON 785
Measuring standard	DIADUR circular scale with incremental track
Line count	18000
System accuracy	± 2"
Position error per signal period	≤ ± 0.7"
Interface	∼1V _{PP}
Reference mark*	RON 785: One RON 785 C: Distance-coded
Cutoff frequency –3 dB	≥ 180 kHz
Electrical connection*	Cable 1 m, with or without M23 coupling (male, 12-pin)
Cable length ¹⁾	≤ 150 m
Power supply	5 V DC ± 0.25 V/≤ 150 mA (without load)
Shaft	Hollow through shaft D = 50 mm
Mech. permissible speed	≤ 1 000 min ⁻¹
Starting torque	≤ 0.5 Nm at 20 °C
Moment of inertia of rotor	$1.05 \cdot 10^{-3} \text{ kgm}^2$
Permissible axial motion of measured shaft	± 0.1 mm
Natural frequency	≥ 1000 Hz
Vibration 55 to 2000 Hz Shock 6 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 200 m/s ² (EN 60068-2-27)
Operating temperature	0 °C to 50 °C
Protection EN 60529	IP 64
Weight	Approx. 2.5 kg


^{*} Please select when ordering


1) With HEIDENHAIN cable

RCN 8000 series

- · Integrated stator coupling
- Hollow through shaft Ø 60 mm
- System accuracy ± 1" and ± 2"

= Bearing of mating shaft

D = Compressed air inlet

© = Required mating dimensions

 Θ = Mark for 0° position \pm 5°

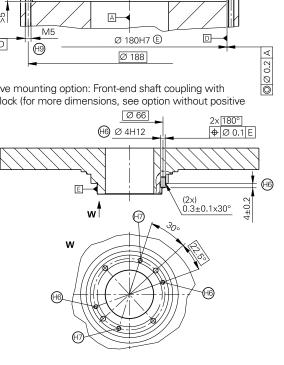
⊕ = Cable support

< 6 mm: ±0.2 mm

 Θ = Free space for customer

 Θ = Shown rotated by 45°

(B) = Accessory: Ring nut ID 336669-11


 \oplus = 2x positive-locking spring pin, ISO 8752 – 4x10 – St (optional)

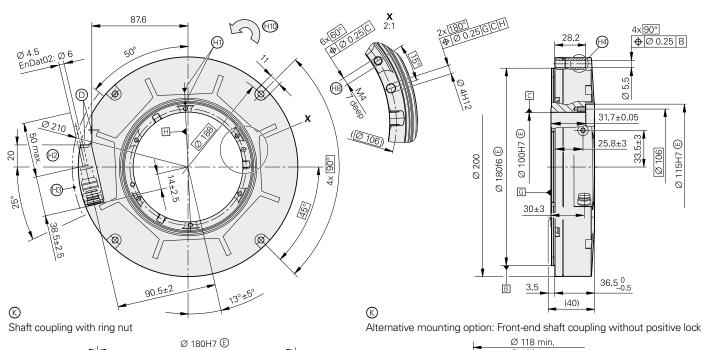
When using spring pins, provide additional back-off threads (M4)

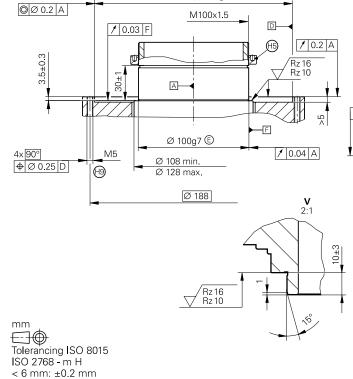
 Θ = Screw penetration 5.5 ± 0.5 mm

 Θ = Screw penetration 11 ± 0.5 mm

= Direction of shaft rotation for output signals as per the interface description

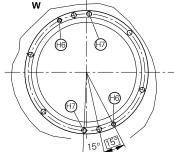
	Absolute RCN 8510 RCN 8310	RCN 8580 RCN 8380	RCN 8590 F RCN 8390 F	RCN 8590 M RCN 8390 M			
Measuring standard	DIADUR circular scale wi	th absolute and increment	al track (32 768 lines)	·			
System accuracy	RCN 85x0: ± 1" RCN 83x0: ± 2"						
Position error per signal period	RCN 85x0: ≤ ± 0.15" RCN 83x0: ≤ ± 0.2"	$RCN 85x0: \le \pm 0.2"$ $RCN 83x0: \le \pm 0.2"$					
Interface	EnDat 2.2	,	Fanuc serial interface αi Interface	Mitsubishi high speed interface			
Ordering designation	EnDat22	EnDat02	Fanuc05	Mit03-4			
Position values/rev	536870912 (29 bits)		1				
Electrically permissible speed	≤ 1500 min ⁻¹ for continuous position value	≤ 750 min ⁻¹ for continuous position value	≤ 1500 min ⁻¹ for contin	nuous position value			
Clock frequency	≤ 16 MHz	≤ 2 MHz	_				
Calculation time t _{cal}	≤ 5 µs		_				
Incremental signals	-	-					
Cutoff frequency –3 dB	-	– ≥ 400 kHz –					
Electrical connection	Separate adapter cable co	Separate adapter cable connectable to encoder via quick disconnect					
Cable length ¹⁾	≤ 150 m	≤ 150 m ≤ 50 m ≤ 30 m					
Power supply	3.6 to 14 V DC		1				
Power consumption ²⁾ (maximum)	3.6 V: ≤ 1.1 W 14 V: ≤ 1.3 W						
Current consumption (typical)	5 V: ≤ 140 mA (without lo	5 V: ≤ 140 mA (without load)					
Shaft	Hollow through shaft D =	: 60 mm					
Mech. permissible speed	\leq 500 min ⁻¹ ; temporary:	≤ 1500 min ⁻¹ (speeds ove	r 500 min ⁻¹ require consu	ıltation)			
Starting torque	≤ 0.7 Nm at 20 °C						
Moment of inertia of rotor	1.3 · 10 ⁻³ kgm ²						
Permissible axial motion of measured shaft	± 0.3 mm						
Natural frequency	≥ 900 Hz						
Vibration 55 to 2000 Hz Shock 6 ms	≤ 200 m/s ² (EN 60068-2- ≤ 200 m/s ² (EN 60068-2-	\leq 200 m/s ² (EN 60068-2-6) \leq 200 m/s ² (EN 60068-2-27)					
Operating temperature	0 °C to 50 °C						
Protection EN 60529	IP 64	IP 64					
Weight	Approx. 2.8 kg						


¹⁾ With HEIDENHAIN cable


²⁾ See General electrical information in the Interfaces for HEIDENHAIN Encoders brochure

RCN 8000 series

- · Integrated stator coupling
- Hollow through shaft Ø 100 mm
- System accuracy ± 1" and ± 2"

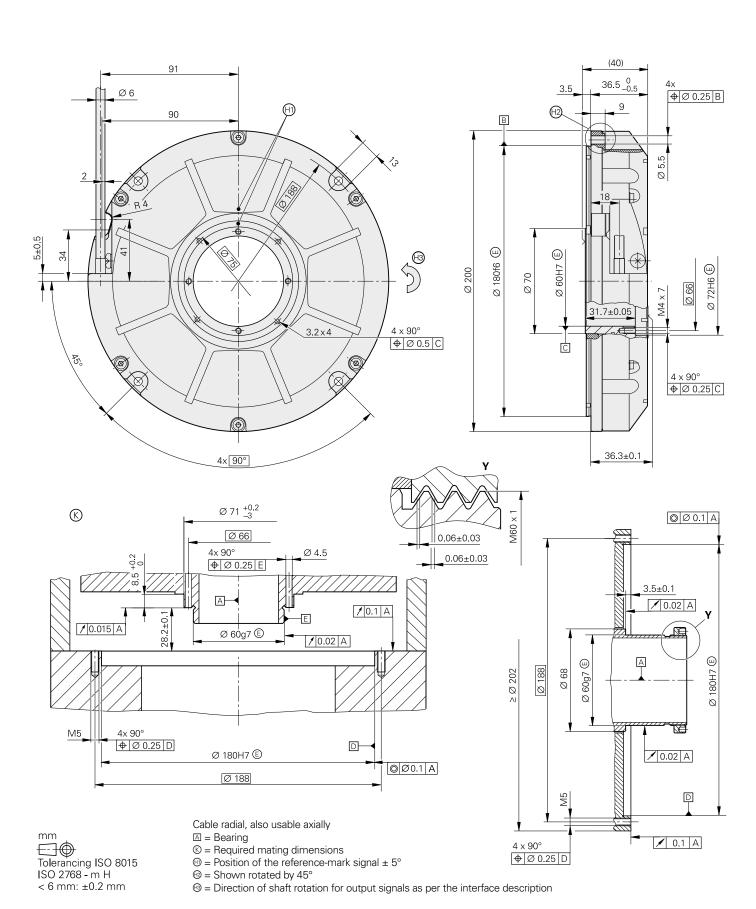


Ø 118 min. Ø 128 max. Ø 114.7±0.1 Ø 106 6x 60° ⊕ Ø 0.25 E Ø 4.5 8.5 / 0.2 A 28.2±0.3 w 🖡 / 0.03 A Ø 100g7 🖲 / 0.04 A A-2 4x 90° M5 D Ø 180H7 🖲 ф Ø 0.25 D (19) Ø 188 Ø Ø 0.2 **(K)** Alternative mounting option: Front-end shaft coupling with positive lock (for more dimensions, see option without positive

Ø 106 Ø 4H12 ⊕ Ø 0.1 | E W
(2x) 0.3±0.1x30° ← H

- □ = Bearing of mating shaft
- © = Required mating dimensions
- Θ = Mark for 0° position \pm 5°
- ⊕ = Cable support
- ⊕ = Free space for customer
- Θ = Shown rotated by 45°
- ⊕ = Accessory: Ring nut ID 336669-11
- Θ = 2x positive-locking spring pin, ISO 8752 4x10 St (optional)
- The wind spring pins, provide additional back-off threads (M4)
- Θ = Screw penetration 11 ± 0.5 mm
- Direction of shaft rotation for output signals as per the interface description

	Absolute RCN 8510 RCN 8310	RCN 8580 RCN 8380	RCN 8590 F RCN 8390 F	RCN 8590 M RCN 8390 M				
Measuring standard	DIADUR circular scale wi	DIADUR circular scale with absolute and incremental track (32768 lines)						
System accuracy	RCN 85x0: ± 1" RCN 83x0: ± 2"							
Position error per signal period	$RCN 85x0: \le \pm 0.15"$ $RCN 83x0: \le \pm 0.2"$	$RCN 85x0: \le \pm 0.2"$ $RCN 83x0: \le \pm 0.2"$						
Interface	EnDat 2.2		Fanuc serial interface αi Interface	Mitsubishi high speed interface				
Ordering designation	EnDat22	EnDat02	Fanuc05	Mit03-4				
Position values/rev	536870912 (29 bits)							
Elec. permissible speed	≤ 1500 min ⁻¹ for continuous position value	≤ 750 min ⁻¹ for continuous position value	≤ 1500 min ⁻¹ for contin	uous position value				
Clock frequency	≤ 16 MHz	≤ 2 MHz	-					
Calculation time t _{cal}	≤ 5 µs	I	-					
Incremental signals	_	∼1 V _{PP}	_					
Cutoff frequency –3 dB	_	– ≥ 400 kHz –						
Electrical connection	Separate adapter cable connectable to encoder via quick disconnect							
Cable length ¹⁾	≤ 150 m		≤ 50 m	≤ 30 m				
Power supply	3.6 to 14 V DC	3.6 to 14 V DC						
Power consumption ²⁾ (maximum)	3.6 V: ≤ 1.1 W 14 V: ≤ 1.3 W							
Current consumption (typical)	5 V: ≤ 140 mA (without lo	5 V: ≤ 140 mA (without load)						
Shaft	Hollow through shaft D =	100 mm						
Mech. permissible speed	≤ 500 min ⁻¹ ; temporary:	≤ 1500 min ⁻¹ (speeds over	r 500 min ⁻¹ require consu	Itation)				
Starting torque	≤ 1.0 Nm at 20 °C							
Moment of inertia of rotor	3.3 · 10 ⁻³ kgm ²							
Permissible axial motion of measured shaft	± 0.3 mm							
Natural frequency	≥ 900 Hz							
Vibration 55 to 2000 Hz Shock 6 ms	\leq 200 m/s ² (EN 60068-2-6) \leq 200 m/s ² (EN 60068-2-27)							
Operating temperature	0 °C to 50 °C							
Protection EN 60529	IP 64							
Weight	Approx. 2.6 kg							
With HEIDENHAIN cable	2) See General electrical information in the Interfaces for HEIDENHAIN Encoders brochure							


¹⁾ With HEIDENHAIN cable

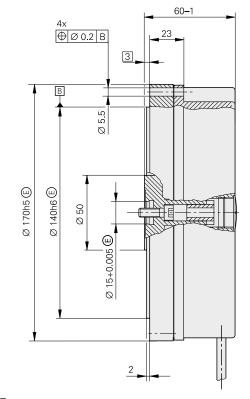
²⁾ See *General electrical information* in the *Interfaces for HEIDENHAIN Encoders* brochure

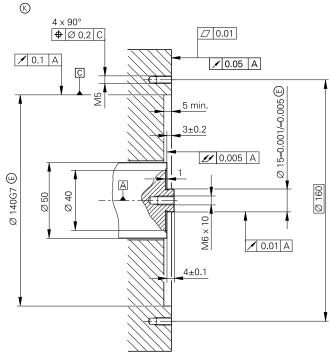
RON 786/RON 886/RPN 886

- Integrated stator coupling
- Hollow through shaft Ø 60 mm
- System accuracy ± 1" or ± 2"

	Incremental RON 786	RON 886	RPN 886			
Measuring standard	DIADUR circular scale with incremental track					
Line count*	18000 36000 36000		90 000 (≙ 180 000 signal periods)			
System accuracy	± 2"	± 1"				
Position error per signal period	18000 lines: ≤ ± 0.7" 36000 lines: ≤ ± 0.35"	≤ ± 0.35"	≤ ± 0.1"			
Interface	√ 1 V _{PP}					
Reference mark*	RON x86: One RON x86 C: Distance-coded		One			
Cutoff –3 dB frequency –6 dB	≥ 180 kHz		≥ 800 kHz ≥ 1300 kHz			
Electrical connection*	Cable 1 m, with or without M23 coupling (male, 12-pin)					
Cable length ¹⁾	≤ 150 m					
Power supply	5 V DC ± 0.25 V/≤ 150 mA (withou	ut load)	5 V DC ± 0.5 V/≤ 250 mA (without load)			
Shaft	Hollow through shaft D = 60 mm					
Mech. permissible speed	≤ 1 000 min ⁻¹					
Starting torque	≤ 0.5 Nm at 20 °C					
Moment of inertia of rotor	1.2 · 10 ⁻³ kgm ²					
Permissible axial motion of measured shaft	≤ ± 0.1 mm					
Natural frequency	≥ 1000 Hz		≥ 500 Hz			
Vibration 55 to 2000 Hz Shock 6 ms	≤ 100 m/s ² (EN 60068-2-6) ≤ 200 m/s ² (EN 60068-2-27)	≤ 50 m/s ² (EN 60 068-2-6) ≤ 200 m/s ² (EN 60 068-2-27)				
Operating temperature	0 °C to 50 °C					
Protection EN 60529	IP 64					
Weight	Approx. 2.5 kg					


^{*} Please select when ordering


1) With HEIDENHAIN cable


RON 905

- Integrated stator coupling
- Blind hollow shaft
- System accuracy ± 0.4"

Cable radial, also usable axially

 \triangle = Bearing

© = Required mating dimensions
© = Direction of shaft rotation for output signal I₂ lagging I₁

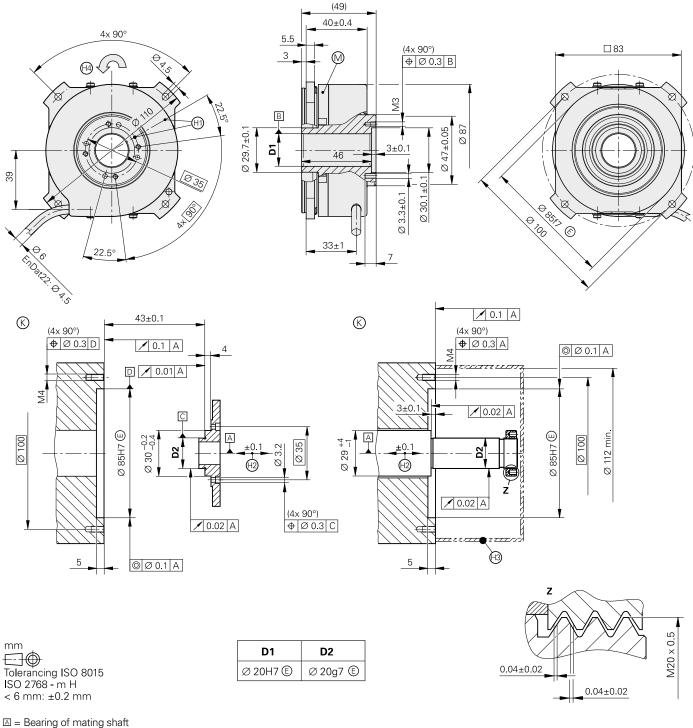
	Incremental RON 905
Measuring standard	DIADUR circular scale with incremental track
Line count	36000
System accuracy	± 0.4"
Position error per signal period	≤ ± 0.3"
Interface	11 μApp
Reference mark	One
Cutoff frequency –3 dB	≥ 40 kHz
Electrical connection	Cable 1 m, with M23 connector (male, 9 pin)
Power supply	5 V DC ± 0.25 V/≤ 250 mA (without load)
Cable length ¹⁾	≤ 15 m
Shaft	Blind hollow shaft
Mech. permissible speed	≤ 100 min ⁻¹
Starting torque	≤ 0.05 Nm at 20 °C
Moment of inertia of rotor	$0.345 \cdot 10^{-3} \text{ kgm}^2$
Permissible axial motion of measured shaft	≤ ± 0.2 mm
Natural frequency	≥ 350 Hz
Vibration 55 to 2000 Hz Shock 6 ms	\leq 50 m/s ² (EN 60068-2-6) \leq 200 m/s ² (EN 60068-2-27)
Operating temperature	10 °C to 30 °C
Protection EN 60529	IP 64
Weight	Approx. 4 kg

¹⁾ With HEIDENHAIN cable

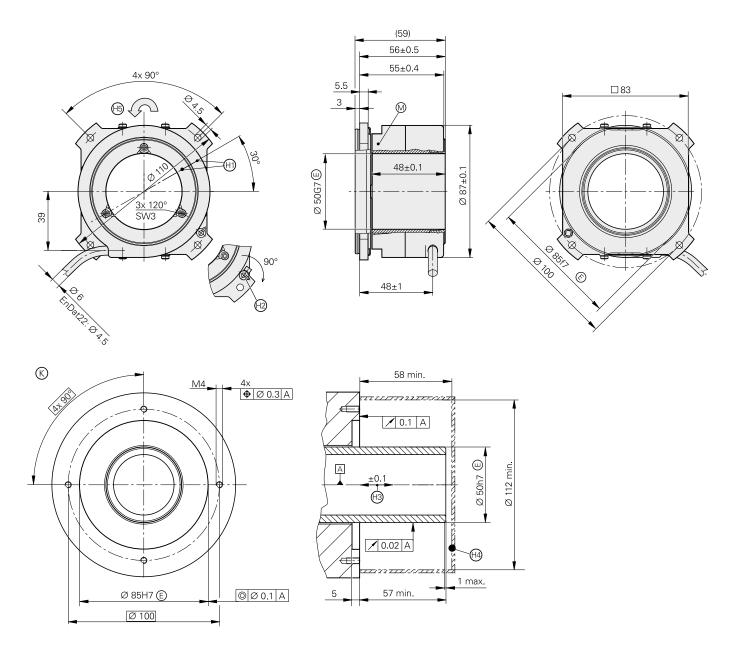
ECN 200 series

- Mounted stator coupling
 Hollow-through shaft Ø 20 mm and Ø 50 mm
- System accuracy ± 10"

ECN 200 Ø 20 mm


ECN 200 Ø 50 mm

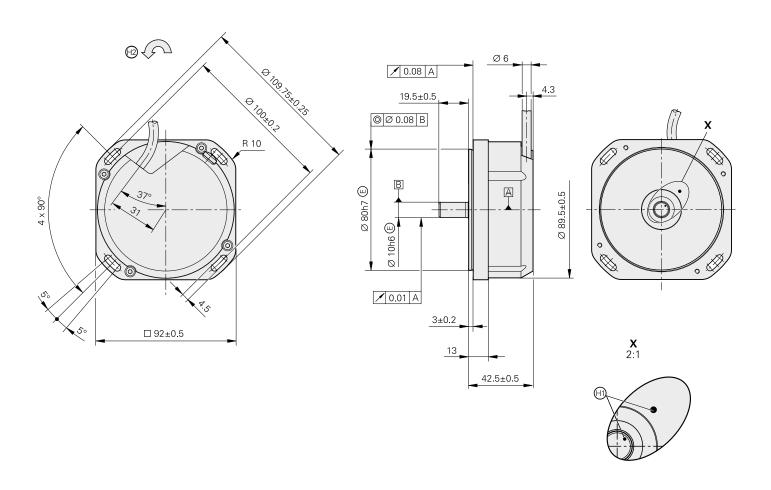
vieasu	ring standard
Systen	n accuracy
Position	n error per signal period
nterfac	ce
Orderin	g designation*
Position	n values per revolution
Electric	ally permissible speed
Clock fr	requency
Calcula	tion time t _{cal}
ncrem	ental signals
Cutoff f	requency –3 dB
Electric	cal connection*
Cable le	ength ¹⁾
Powers	supply
Power	consumption ²⁾ (maximum)
Current	consumption (typical)
Shaft*	
Mechar	nically permissible speed
Starting	g torque (at 20 °C)
Momer	nt of inertia of rotor
Permiss	sible axial motion of measured shaft
Natura	I frequency
Vibrati Shock	on 55 to 2000 Hz 6 ms
Operat	ing temperature
Protect	tion EN 60529
	<u> </u>


Absolute ECN 225		ECN 223F	ECN 223M			
DIADUR circular scale with abso	lute and incremental track (2048 li	nes)	'			
± 10"						
≤ ± 5"						
EnDat 2.2		Fanuc serial interface α Interface	Mitsubishi high speed interface			
EnDat22	EnDat02	Fanuc02	Mit02-4			
33554432 (25 bits)	1	8388608 (23 bits)				
≤ 3000 min ⁻¹ for continuous pos	sition value					
≤8 MHz	≤ 2 MHz	_				
≤ 5 µs	1	-				
_	∼1 V _{PP}	-				
-	≥ 200 kHz	-				
Cable 1 m, with M12 coupling (male, 8-pin)	Cable 1 m, with M23 coupling (male, 17-pin)	Cable 1 m, with or without M12 coupling (male, 8-pin)				
≤ 150 m		≤ 30 m				
3.6 to 5.25 V DC						
3.6 V: ≤ 0.7 W 5.25 V: ≤ 1.0 W						
5 V: ≤ 200 mA (without load)						
Hollow-through shaft D = 20 mm	n or 50 mm					
≤ 3000 min ⁻¹						
$D = 20 \text{ mm}$: $\leq 0.15 \text{ Nm}$ $D = 50 \text{ mm}$: $\leq 0.2 \text{ Nm}$						
$D = 20 \text{ mm: } 138 \cdot 10^{-6} \text{ kgm}^2$ $D = 50 \text{ mm: } 215 \cdot 10^{-6} \text{ kgm}^2$						
± 0.1 mm						
≥ 1 000 Hz						
$\leq 100 \text{ m/s}^2 \text{ (EN 60 068-2-6)}$ $\leq 200 \text{ m/s}^2 \text{ (EN 60 068-2-27)}$						
Frequent flexing: -10 °C to 70 °C Stationary cable: -20 °C to 70 °C						
IP 64						
D = 20 mm: approx. 0.8 kg; D =	<i>50 mm:</i> approx. 0.7 kg					

Hollow shaft D = 20 mm

- **B** = Bearing of encoder
- © = Required mating dimensions
- Θ = Zero position $\pm 15^{\circ}$
- (9) = Maximum permissible motion of motor shaft
- (9) = Protection against contact as per EN 60529
- Θ = Direction of shaft rotation for output signals as per the interface description

Hollow shaft D = 50 mm



- ⊗ = Required mating dimensions
- Θ = Zero position $\pm 15^{\circ}$
- Remove mounting aid before putting into operation. Width A/F 3
- (9) = Maximum permissible motion of motor shaft
- ⊕ = Protection against contact as per EN 60529
- (9) = Direction of shaft rotation for output signals as per the interface description

ROD 200 series

- For separate shaft coupling
- System accuracy ± 5"

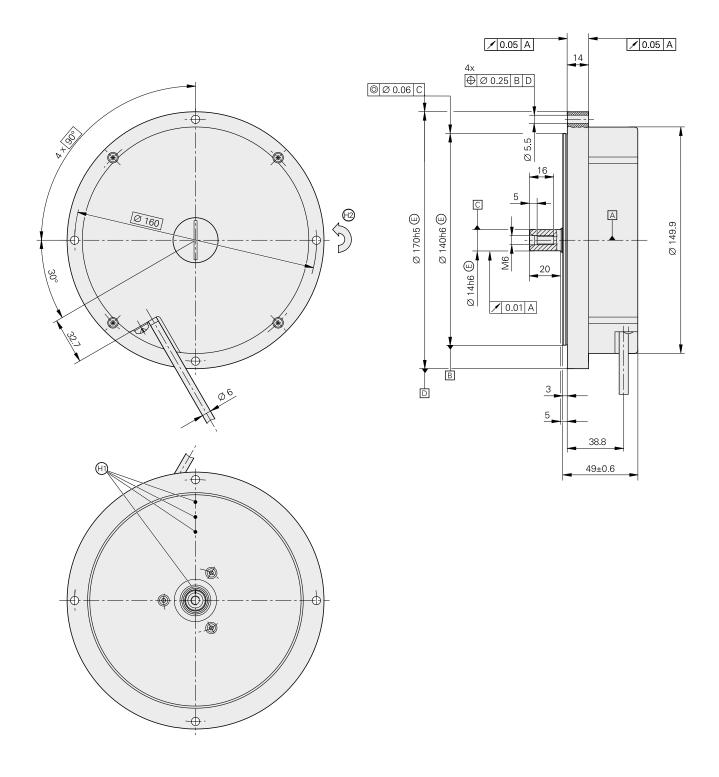
mm Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

Cable radial, also usable axially

△ = Bearing

1 = Position of the reference-mark signal $\pm 5^{\circ}$

@ = Direction of shaft rotation for output signals as per the interface description


	Incremental ROD 220	ROD 270	ROD 280			
Measuring standard	DIADUR circular scale with increm	nental track				
Line count	9000	18000	18000			
System accuracy	± 5"					
Position error per signal period	≤ ± 1.4"	≤ ± 0.7"				
Interface	ГШП		∼1V _{PP}			
Integrated interpolation Output signals/rev	2-fold 18000	10-fold 180 000	_ 18000			
Reference mark*	One		ROD 280: One RON 280 C: Distance-coded			
Cutoff frequency –3 dB Output frequency Edge separation a	_ ≤ 1 MHz ≥ 0.125 μs	_ ≤ 1 MHz ≥ 0.22 μs	≥ 180 kHz - -			
Elec. permissible speed	≤ 3333 min ⁻¹	≤ 333 min ⁻¹	-			
Electrical connection*	Cable 1 m, with or without M23 coupling (male, 12-pin)					
Cable length ¹⁾	≤ 100 m	≤ 150 m				
Power supply	5 V DC ± 0.25 V/≤ 150 mA (withou	t load)				
Shaft	Solid shaft D = 10 mm					
Mech. permissible speed	≤ 10000 min ⁻¹					
Starting torque	≤ 0.01 Nm at 20 °C					
Moment of inertia of rotor	20 · 10 ⁻⁶ kgm ²					
Shaft load	Axial: 10 N Radial: 10 N at shaft end					
Vibration 55 to 2000 Hz Shock 6 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 200 m/s ² (EN 60068-2-27)					
Operating temperature	Frequent flexing: -10 °C to 70 °C Stationary cable: -20 °C to 70 °C					
Protection EN 60529	IP 64	IP 64				
Weight	Approx. 0.7 kg	Approx. 0.7 kg				

^{*} Please select when ordering 1) With HEIDENHAIN cable

ROD 780/ROD 880

- For separate shaft coupling
 System accuracy ± 1" or ± 2"

Cable radial, also usable axially

△ = Bearing

⊕ = Position of the reference-mark signal ± 5°

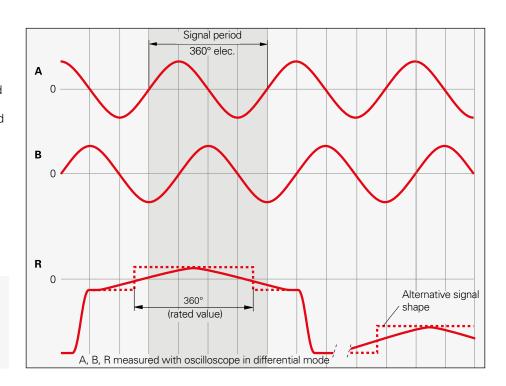
@ = Direction of shaft rotation for output signals as per the interface description

	Incremental ROD 780 ROD 880					
Measuring standard	DIADUR circular scale with incremental track					
Line count*	18000 36000	36 000				
System accuracy	± 2"	± 1"				
Position error per signal period	18000 lines: ≤ ± 0.7" 36000 lines: ≤ ± 0.35"	≤ ± 0.35"				
Interface	∼ 1 Vpp					
Reference mark*	ROD x80: One RON x80 C: Distance-coded					
Cutoff frequency –3 dB	≥ 180 kHz					
Electrical connection*	Cable 1 m, with or without M23 coupling (male, 12-pin)					
Cable length ¹⁾	≤ 150 m					
Power supply	5 V DC ± 0.25 V/≤ 150 mA (without load)					
Shaft	Solid shaft D = 14 mm					
Mech. permissible speed	≤ 1000 min ⁻¹					
Starting torque	≤ 0.012 Nm at 20 °C					
Moment of inertia of rotor	$0.36 \cdot 10^{-3} \text{ kgm}^2$					
Shaft load	Axial: 30 N Radial: 30 N at shaft end					
Vibration 55 to 2000 Hz Shock 6 ms	\leq 100 m/s ² (EN 60068-2-6) \leq 200 m/s ² (EN 60068-2-27)					
Operating temperature	0 °C to 50 °C					
Protection EN 60529	IP 64					
Weight	Approx. 2.4 kg					

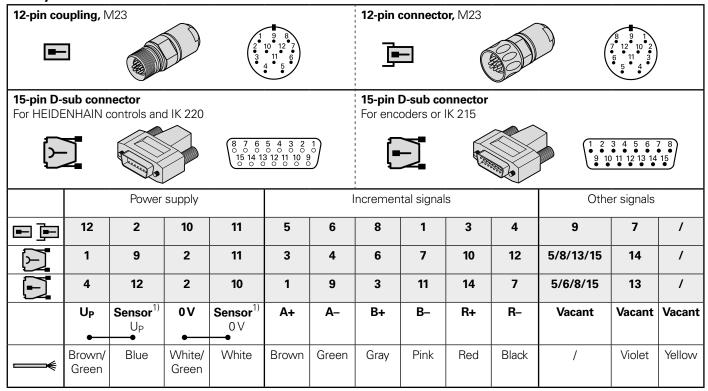
^{*} Please select when ordering

1) With HEIDENHAIN cable

Interfaces


Incremental signals \sim 1 V_{PP}

HEIDENHAIN encoders with \sim 1 V_{PP} interface provide voltage signals that can be highly interpolated.


The sinusoidal **incremental signals** A and B are phase-shifted by 90° elec. and have amplitudes of typically 1 V_{PP}. The illustrated sequence of output signals—with B lagging A—applies for the direction of motion shown in the dimension drawing.

The **reference mark signal** R has an unambiguous assignment to the incremental signals. The output signal might be somewhat lower next to the reference mark.

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the *Interfaces for HEIDENHAIN Encoders* brochure.

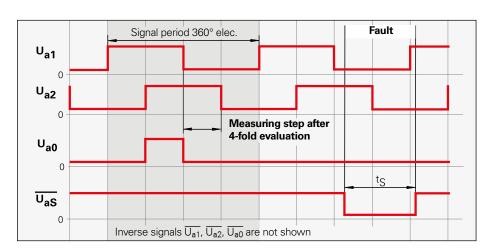
Pin layout

Cable shield connected to housing; UP = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

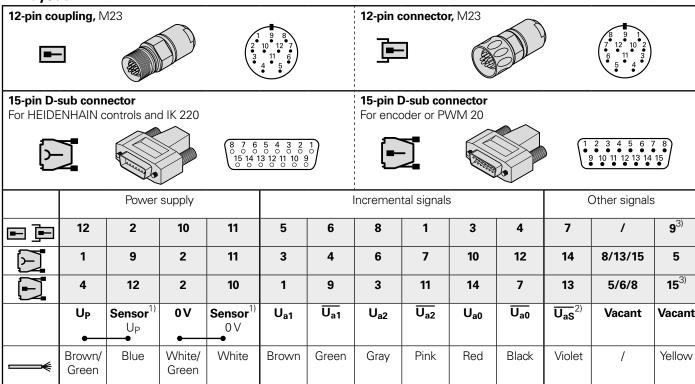
Vacant pins or wires must not be used!

¹⁾ LIDA 2xx: Vacant


Incremental signals TLITTL

HEIDENHAIN encoders with □□ITL interface incorporate electronics that digitize sinusoidal scanning signals with or without interpolation.

The incremental signals are transmitted as the square-wave pulse trains U_{a1} and U_{a2}, phase-shifted by 90° elec. The reference mark signal consists of one or more reference pulses U_{a0}, which are gated with the incremental signals. In addition, the integrated electronics produce their inverted **signals** $\overline{U_{a1}}$, $\overline{U_{a2}}$ and $\overline{U_{a0}}$ for noise-proof transmission. The illustrated sequence of output signals—with Ua2 lagging Ua1applies to the direction of motion shown in the dimension drawing.


The **fault detection signal** $\overline{U_{aS}}$ indicates fault conditions such as an interruption in the supply lines, failure of the light source,

The distance between two successive edges of the incremental signals Ua1 and U_{a2} through 1-fold, 2-fold or 4-fold evaluation is one measuring step.

Comprehensive descriptions of all available interfaces as well as general electrical information is included in the Interfaces for HEIDENHAIN Encoders brochure.

Pin layout

Cable shield connected to housing; UP = Power supply voltage

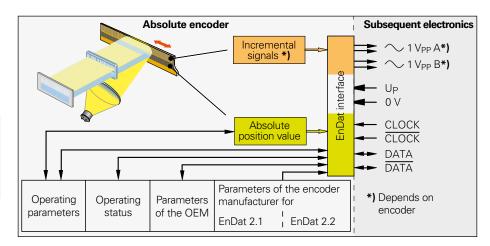
Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used!

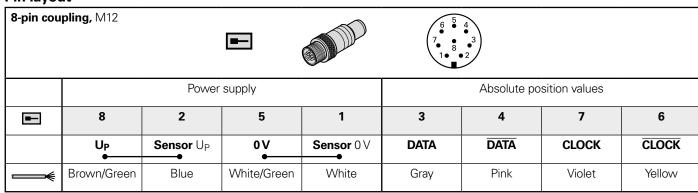
1) LIDA 2xx: Vacant / ERO 14xx: Vacant 1) **LIDA 2xx:** Vacant /

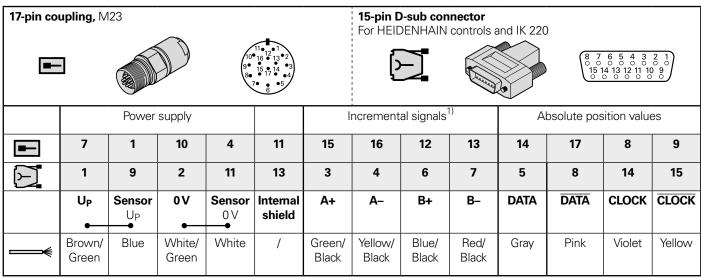
³⁾ **Exposed linear encoders:** Switchover TTL/11 μA_{PP} for PWT, otherwise vacant

Interfaces


Position values EnDat

The EnDat interface is a digital, bidirectional interface for encoders. It is capable both of transmitting position values as well as transmitting or updating information stored in the encoder, or saving new information. Thanks to the serial transmission method, only four signal **lines** are required. The DATA data is transmitted in synchronism with the CLOCK signal from the subsequent electronics. The type of transmission (position values, parameters, diagnostics, etc.) is selected through mode commands that the subsequent electronics send to the encoder. Some functions are available only with EnDat 2.2 mode commands.


Comprehensive descriptions of all available interfaces as well as general electrical information is included in the *Interfaces for HEIDENHAIN Encoders* brochure.


Ordering designation	Command set	Incremental signals
EnDat01	EnDat 2.1 or EnDat 2.2	With
EnDat21		Without
EnDat02	EnDat 2.2	With
EnDat22	EnDat 2.2	Without

Versions of the EnDat interface

Pin layout

Cable shield connected to housing; U_P = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used!

1) Only with order designations EnDat01 and EnDat02

Interfaces

Fanuc and Mitsubishi pin layouts

Fanuc

HEIDENHAIN encoders with the code letter F after the model designation are suited for connection to Fanuc controls with

Fanuc serial interface – α Interface
 Ordering designation Fanuc02
 normal and high speed, two-pair transmission

• Fanuc serial interface - αi Interface

Ordering designation Fanuc05 high speed, one-pair transmission includes α Interface (normal and high speed, two-pair transmission)

20-pin Fanuc connector	(<u>)</u>			101		8-pin M12 coupli	ng		6 5 4 7 8 3 10 0 2
Power supply						Absolute po	sition values		
(A)	9	18/20	12	14	16	1	2	5	6
-	8	2	5	1	-	3	4	7	6
	U _P	Sensor U _P	0 V	Sensor 0 V	Shield	Serial Data	Serial Data	Request	Request
	Brown/ Green	Blue	White/ Green	White	-	Gray	Pink	Violet	Yellow

Cable shield connected to housing; UP = power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used!

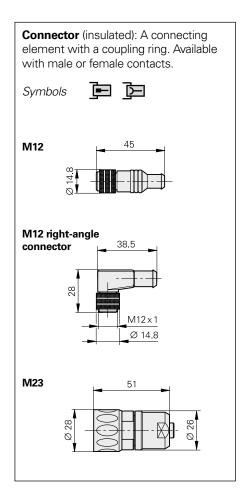
Mitsubishi

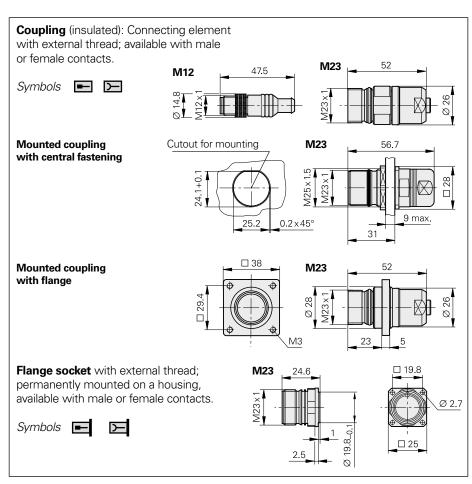
HEIDENHAIN encoders with the code letter M after the model designation are suited for connection to Mitsubishi controls with

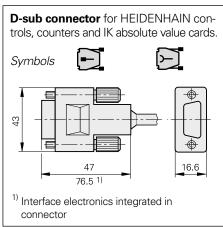
Mitsubishi high speed interface

- Ordering designation Mitsu01 two-pair transmission
- Ordering designation Mit02-4 Generation 1, two-pair transmission
- Ordering designation Mit02-2 Generation 1, one-pair transmission
- Ordering designation Mit03-4 Generation 2, two-pair transmission

10-pin Mitsubishi connector		91	20-pin Mitsubishi connector		110	8-pin M12 coupling		6 5 4 7 • • 3 1 • • 2
	Power supply Absolute position values							
10-pin	1	-	2	-	7	8	3	4
20-pin	20	19	1	11	6	16	7	17
=	8	2	5	1	3	4	7	6
	U _P	Sensor U _P	0 V	Sensor 0 V	Serial Data	Serial Data	Request Frame	Request Frame
 €	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow


Cable shield connected to housing; U_P = power supply voltage


Sensor: The sensor line is connected in the encoder with the corresponding power line.


Vacant pins or wires must not be used!

Cables and connecting elements

General information

The pins on connectors are **numbered** in the direction opposite to those on couplings or flange sockets, regardless of whether the connecting elements have

male contacts or

female contacts.

•

When engaged, the connections are **protected** to IP 67 (D-sub connector: IP 50; EN 60 529). When not engaged, there is no protection.

Accessories for flange sockets and M23 mounted couplings

Bell seal

ID 266526-01

Threaded metal dust cap ID 219926-01

Accessory for M12 connecting element Insulation spacer

ID 596495-01

Connecting cables \sim 1 V_{PP} \square \square \square \square

12-pin M23

		~1V _{PP} ⊓⊔TTL
PUR connecting cables	12-pin: $[4(2 \times 0.14 \text{ mm}^2) + (4 \times 0.5 \text{ mm}^2)]$	
Complete with connector (female) and coupling (male)	<u></u>	298401-xx
Complete with connectors (female and male)		298399-xx
Complete with connector (female) and D-sub connector (female) for IK 220		310199-xx
Complete with connector (female) and D-sub connector (male) for IK 115/IK 215		310196-xx
With one connector (female)	<u></u>	309777-xx
Cable without connectors, Ø 8 mm	→	244957-01
Mating element on connecting cable to connector on encoder cable	Connector (female) Ø 8 mm	291697-05
Connector on connecting cable for connection to subsequent electronics	Connector (male) Ø 8 mm Ø 6 mm	291697-08 291697-07
Coupling on connecting cable	Coupling (male) Ø 4.5 mm Ø 6 mm Ø 8 mm	291698-14 291698-03 291698-04
Flange socket for mounting on subsequent electronics	Flange socket (female)	315892-08
Mounted couplings	With flange (female) Ø 6 mm Ø 8 mm	291698-17 291698-07
	With flange (male) Ø 6 mm Ø 8 mm	291698-08 291698-31
	With central fastening Ø 6 to (male) 00 mm	741045-01
Adapter ~ 1 V _{PP} /11 μA _{PP} For converting the 1 V _{PP} signals to 11 μA _{PP} ; M23 connector (female, 12-pin) and M23 connector (male, 9-pin)		364914-01
\=: Cross saction of navvar supply lines	Ø: Cable diameter	1

A_P: Cross section of power supply lines

Ø: Cable diameter

EnDat connecting cables

8-pin 17-pin M12 M23

		EnDat without incremental signals	EnDat with incremental signals
PUR adapter cable	8-pin: $[4(2 \times 0.14 \text{ mm}^2)]$; $A_P = 0.14 \text{ mm}^2$ 17-pin: $[6(2 \times 0.19 \text{ mm}^2)]$: $A_P = 0.19 \text{ mm}^2$		
Complete with M23 coupling (male, 17-pin)	Ø 6 mm	-	643450-xx
Complete with D-sub connector (female, 15-pin)	Ø 4.5 mm Ø 6 mm	735987-xx -	- 727658-xx
Complete with M12 coupling (male, 8-pin)	Ø 4.5 mm	679671-xx	-
PUR connecting cables	8-pin: $[(4 \times 0.14 \text{ mm}^2) + (4 \times 0.34 \text{ mm}^2)]$ 17-pin: $[(4 \times 0.14 \text{ mm}^2) + 4(2 \times 0.14 \text{ mm}^2)]$	9 (2) + (4 × 0.5 mm ²)] 9	6 mm; $A_P = 0.34 \text{ mm}^2$ 8 mm; $A_P = 0.5 \text{ mm}^2$
Complete with connector (female) and coupling (male)	<u></u>	368330-xx	323897-xx
Complete with connector (female) and D-sub connector (female) for IK 220		533627-xx	332115-xx
Complete with connector (female) and D-sub connector (male) for IK 115/IK 215		524599-xx	324544-xx
With one connector (female)	<u></u>	634265-xx	309778-xx
Cable only, Ø 8 mm	*	-	266306-01
Mating element on connecting cable to connector on encoder cable	Connector (female) Ø 8 mm	-	291697-26
Connector on cable for connection to subsequent electronics	Connector (male) Ø 8 mm	-	291697-27
Coupling on connecting cable	Coupling (male) Ø 4.5 mm Ø 6 mm Ø 8 mm	-	291698-25 291698-26 291698-27
Flange socket for mounting on subsequent electronics	Flange socket (female)	-	315892-10
Mounted couplings	With flange (female) Ø 6 mm	-	291698-35
	With flange (male) Ø 6 mm Ø 8 mm	-	291698-41 291698-29
	With central Ø 6 mm to 10 mm fastening (male)	-	741045-02

A_P: Cross section of power supply lines

Ø: Cable diameter

Connecting cables Fanuc Mitsubishi

			Fanuc	Mitsubishi
PUR adapter cable	$[4(2 \times 0.14 \text{ mm}^2)]; A_P = 0.14 \text{ mm}^2$			
Complete with 8-pin M12 coupling (male)	-	Ø 4.5 mm	679671-xx	
Complete with Fanuc connector (female)		Ø 4.5 mm	770967-xx	-
Complete with 10-pin Mitsubishi connector (female)		Ø 4.5 mm	-	770968-xx
Complete with 20-pin Mitsubishi connector (male)		Ø 4.5 mm	-	770966-xx
PUR connecting cables	$[(4 \times 0.14 \text{ mm}^2) + (4 \times 0.34 \text{ mm}^2)]; A_P =$	$= 0.34 \text{ mm}^2$	1	
Complete with M12 connector (female, 8-pin) and M12 coupling (male, 8-pin)	_	Ø 6 mm	368330-xx	
Complete with M12 connector (female, 8-pin) and M23 coupling (male, 17-pin)	<u></u>	Ø 6 mm	582333-xx	
Complete with M12 connector (female, 8-pin) and Fanuc connector (female)		Ø 6 mm	646807-xx	-
Complete with M12 connector (female, 8-pin) and Mitsubishi connector (female, 10-pin)		Ø 6 mm	-	647314-xx
Complete with M12 connector (female, 8-pin) and Mitsubishi connector (male, 20-pin)		Ø 6 mm	-	646806-xx
Complete with M23 connector (female, 17-pin) and Fanuc connector (female) $[(2 \times 2 \times 0.14 \text{ mm}^2) + (4 \times 1 \text{ mm}^2)];$ $A_P = 1 \text{ mm}^2$		Ø8mm	534855-xx	-
Complete with M23 connector (female, 17-pin) and Mitsubishi connector (female, 10-pin) $[(2 \times 2 \times 0.14 \text{ mm}^2) + (4 \times 1 \text{ mm}^2)];$ $A_P = 1 \text{ mm}^2$		Ø 8 mm	-	573661-xx
Complete with M23 connector (female, 17-pin) and Mitsubishi connector (male, 20-pin) $[(2 \times 2 \times 0.14 \text{ mm}^2) + (4 \times 0.5 \text{ mm}^2)];$ $A_P = 0.5 \text{ mm}^2$		Ø6mm	-	367958-xx
Cable without connectors $[(2 \times 2 \times 0.14 \text{ mm}^2) + (4 \times 1 \text{ mm}^2)];$ $A_P = 1 \text{ mm}^2$	> ────	Ø8mm	354608-01	

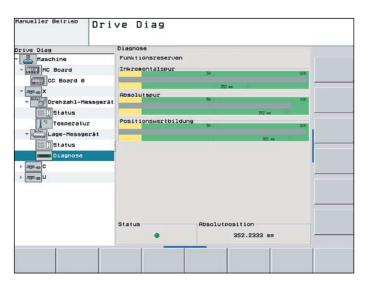
 $\mathsf{A}_{\mathsf{P}}\!\!:\mathsf{Cross}$ section of power supply lines

Ø: Cable diameter

Diagnostic and testing equipment

HEIDENHAIN encoders are provided with all information necessary for commissioning, monitoring and diagnostics. The type of available information depends on whether the encoder is incremental or absolute and which interface is used.

Incremental encoders mainly have 1 V_{PP}, TTL or HTL interfaces. TTL and HTL encoders monitor their signal amplitudes internally and generate a simple fault detection signal. With 1 V_{PP} signals, the analysis of output signals is possible only in external test devices or through computation in the subsequent electronics (analog diagnostics interface).


Absolute encoders operate with serial data transfer. Depending on the interface, additional 1 V_{PP} incremental signals can be output. The signals are monitored comprehensively within the encoder. The monitoring result (especially with valuation numbers) can be transferred along with the position value through the serial interface to the subsequent electronics (digital diagnostics interface). The following information is available:

- Error message: Position value not reliable
- Warning: An internal functional limit of the encoder has been reached
- Valuation numbers:
 - Detailed information on the encoder's functional reserve
 - Identical scaling for all HEIDENHAIN encoders
 - Cyclic output is possible

This enables the subsequent electronics to evaluate the current status of the encoder at little cost even in closed-loop mode.

HEIDENHAIN offers the appropriate PWM inspection devices and PWT test devices for encoder analysis. There are two types of diagnostics, depending on how they are integrated:

- Encoder diagnostics: The encoder is connected directly to the test or inspection device. This makes a comprehensive analysis of encoder functions possible.
- Diagnostics in the control loop: The PWM phase meter is looped into the closed control loop (e.g. through a suitable testing adapter). This makes a real-time diagnosis of the machine or system possible during operation. The functions depend on the interface.

Diagnostics in the control loop on HEIDENHAIN controls with display of the valuation number or the analog encoder signals

Diagnostics using PWM 20 and ATS software

Commissioning using PWM 20 and ATS software

PWM 20

Together with the ATS adjusting and testing software, the PWM 20 phase angle measuring unit serves for diagnosis and adjustment of HEIDENHAIN encoders.

	PWM 20		
Encoder input	 EnDat 2.1 or EnDat 2.2 (absolute value with/without incremental signals) DRIVE-CLiQ Fanuc serial interface Mitsubishi high speed interface Yaskawa serial interface SSI 1 V_{PP}/TTL/11 µA_{PP} 		
Interface	USB 2.0		
Power supply	100 V to 240 V AC or 24 V DC		
Dimensions	258 mm x 154 mm x 55 mm		
	470		
	ATS		
Languages	Choice between English and German		
Functions	 Position display Connection dialog Diagnostics Mounting wizard for EBI/ECI/EQI, LIP 200, LIC 4000 and others Additional functions (if supported by the encoder) Memory contents 		
System requirements and recommendations	PC (dual-core processor, > 2 GHz) RAM > 2 GB Windows operating systems XP, Vista, 7 (32-bit/64-bit), 8 200 MB free space on hard disk		

DRIVE-CLiQ is a registered trademark of Siemens Aktiengesellschaft

The **PWM 9** is a universal measuring device for checking and adjusting HEIDENHAIN incremental encoders. Expansion modules are available for checking the various types of encoder signals. The values can be read on an LCD monitor. Soft keys provide ease of operation.

	PWM 9	
Inputs	Expansion modules (interface boards) for 11 µA _{PP} ; 1 V _{PP} ; TTL; HTL; EnDat*/SSI*/commutation signals *No display of position values or parameters	
Functions	 Measures signal amplitudes, current consumption, operating voltage, scanning frequency Graphically displays incremental signals (amplitudes, phase angle and on-off ratio) and the reference-mark signal (width and position) Displays symbols for the reference mark, fault-detection signal, counting direction Universal counter, interpolation selectable from single to 1024-fold Adjustment support for exposed linear encoders 	
Outputs	 Inputs are connected through to the subsequent electronics BNC sockets for connection to an oscilloscope 	
Power supply	10 V to 30 V DC, max. 15 W	
Dimensions	150 mm × 205 mm × 96 mm	

Interface electronics

Interface electronics from HEIDENHAIN adapt the encoder signals to the interface of the subsequent electronics. They are used when the subsequent electronics cannot directly process the output signals from HEIDENHAIN encoders, or if additional interpolation of the signals is necessary.

Input signals of the interface electronics

Interface electronics from HEIDENHAIN can be connected to encoders with sinusoidal signals of 1 V_{PP} (voltage signals) or 11 μ A_{PP} (current signals). Encoders with the serial interfaces EnDat or SSI can also be connected to various interface electronics.

Output signals of the interface electronics

Interface electronics with the following interfaces to the subsequent electronics are available:

- TTL square-wave pulse trains
- EnDat 2.2
- DRIVE-CLiQ
- Fanuc serial interface
- Mitsubishi high speed interface
- Yaskawa serial interface
- PCI bus
- Ethernet
- Profibus

Interpolation of the sinusoidal input signals

In addition to being converted, the sinusoidal encoder signals are also interpolated in the interface electronics. This permits finer measuring steps and, as a result, higher control quality and better positioning behavior.

Formation of a position value

Some interface electronics have an integrated counting function. Starting from the last reference point set, an absolute position value is formed when the reference mark is traversed, and is transferred to the subsequent electronics.

Measured value memory

Interface electronics with integrated measured value memory can buffer measured values:

*IK 220:*Total of 8192 measured values *EIB 74x:* Per input typically 250000 measured values

Box design

Bench-top design

Plug design

Version for integration

Top-hat rail design

Outputs		Inputs		Design – degree of protection	Interpolation ¹⁾ or subdivision	Model
Interface	Qty.	Interface	Qty.	protection	Subdivision	
□ □ □ □ 1	1	∼ 1 V _{PP}	1	Box design – IP 65	5/10-fold	IBV 101
					20/25/50/100-fold	IBV 102
				Without interpolation	IBV 600	
					25/50/100/200/400-fold	IBV 660B
				Plug design – IP 40	5/10/20/25/50/100-fold	APE 371
				Version for integration –	5/10-fold	IDP 181
				IP 00	20/25/50/100-fold	IDP 182
		11 μA _{PP}	1	Box design – IP 65	5/10-fold	EXE 101
					20/25/50/100-fold	EXE 102
					Without/5-fold	EXE 602E
					25/50/100/200/400-fold	EXE 660 B
				Version for integration – IP 00	5-fold	IDP 101
Γ⊔πι/	2	2 ~ 1 V _{PP}	1	Box design – IP 65	2-fold	IBV 6072
↑ 1 V _{PP} Adjustable					5/10-fold	IBV 6172
					5/10-fold and 20/25/50/100-fold	IBV 6272
EnDat 2.2	1	1	1	Box design – IP 65	≤ 16384-fold subdivision	EIB 192
				Plug design – IP 40	≤ 16384-fold subdivision	EIB 392
			2	Box design – IP 65	≤ 16384-fold subdivision	EIB 1512
DRIVE-CLiQ	1	EnDat 2.2	1	Box design – IP 65	_	EIB 2391 S
Fanuc serial	1	∼ 1 V _{PP}	1	Box design – IP 65	≤ 16384-fold subdivision	EIB 192F
interface				Plug design – IP 40	≤ 16384-fold subdivision	EIB 392 F
			2	Box design – IP 65	≤ 16384-fold subdivision	EIB 1592 F
Mitsubishi high speed interface	1	∼1 V _{PP}	1	Box design – IP 65	≤ 16384-fold subdivision	EIB 192M
			Plug design – IP 40	≤ 16384-fold subdivision	EIB 392 M	
			2	Box design – IP 65	≤ 16384-fold subdivision	EIB 1592M
Yaskawa serial interface	1	EnDat 2.2 ²⁾	1	Plug design – IP 40	-	EIB 3391Y
PCI bus	1	1 V _{PP} ; 11 μA _{PP} EnDat 2.1; SSI Adjustable	2	Version for integration – IP 00	≤ 4096-fold subdivision	IK 220
Ethernet	1	1 V_{PP}EnDat 2.1; EnDat 2.211 μA_{PP} upon requestAdjustable by software	4	Bench-top design – IP 40	≤ 4096-fold subdivision	EIB 741 EIB 742
PROFIBUS-DP	1	EnDat 2.1; EnDat 2.2	1	Top-hat rail design	-	PROFIBUS Gateway

¹⁾ Switchable

²⁾ Only LIC 4100, measuring step 5 nm; LIP 200 in preparation

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

2 +49 8669 31-0 FAX +49 8669 5061 E-mail: info@heidenhain.de

www.heidenhain.de

Vollständige und weitere Adressen siehe www.heidenhain.de For complete and further addresses see www.heidenhain.de

HEIDENHAIN Vertrieb Deutschland DF

E-Mail: hd@heidenhain.de

HEIDENHAIN Technisches Büro Nord

12681 Berlin, Deutschland © 030 54705-240

HEIDENHAIN Technisches Büro Mitte

07751 Jena, Deutschland **2** 03641 4728-250

HEIDENHAIN Technisches Büro West 44379 Dortmund, Deutschland 0231 618083-0

HEIDENHAIN Technisches Büro Südwest

70771 Leinfelden-Echterdingen, Deutschland **2** 0711 993395-0

HEIDENHAIN Technisches Büro Südost

83301 Traunreut, Deutschland

© 08669 31-1345

AR NAKASE SRL.

B1653AOX Villa Ballester, Argentina www.heidenhain.com.ar

HEIDENHAIN Techn. Büro Österreich AT

83301 Traunreut, Germany www.heidenhain.de

AU FCR Motion Technology Pty. Ltd

Laverton North 3026, Australia E-mail: vicsales@fcrmotion.com

HEIDENHAIN NV/SA BE

1760 Roosdaal, Belgium www.heidenhain.be

BG ESD Bulgaria Ltd.

Sofia 1172, Bulgaria www.esd.bg

BR DIADUR Indústria e Comércio Ltda.

04763-070 - São Paulo - SP, Brazil www.heidenhain.com.br

GERTNER Service GmbH BY

220026 Minsk, Belarus www.heidenhain.by

HEIDENHAIN CORPORATION CA

Mississauga, OntarioL5T2N2, Canada www.heidenhain.com

HEIDENHAIN (SCHWEIZ) AG CH

8603 Schwerzenbach, Switzerland www.heidenhain.ch

DR. JOHANNES HEIDENHAIN CN (CHINA) Co., Ltd.

Beijing 101312, China www.heidenhain.com.cn

CZ HEIDENHAIN s.r.o.

102 00 Praha 10, Czech Republic www.heidenhain.cz

DK **TPTEKNIK A/S**

2670 Greve, Denmark www.tp-gruppen.dk

FS **FARRESA ELECTRONICA S.A.**

08028 Barcelona, Spain www.farresa.es

HEIDENHAIN Scandinavia AB FI

02770 Espoo, Finland www.heidenhain.fi

HEIDENHAIN FRANCE sarl 92310 Sèvres, France FR

www.heidenhain.fr

GB

HEIDENHAIN (G.B.) Limited Burgess Hill RH15 9RD, United Kingdom www.heidenhain.co.uk

GR MB Milionis Vassilis

17341 Athens, Greece www.heidenhain.gr

HEIDENHAIN LTD HK

Kowloon, Hong Kong E-mail: sales@heidenhain.com.hk

HR Croatia → SL

HEIDENHAIN Kereskedelmi Képviselet HU

1239 Budapest, Hungary www.heidenhain.hu

ID PT Servitama Era Toolsindo Jakarta 13930, Indonesia

E-mail: ptset@group.gts.co.id

NEUMO VARGUS MARKETING LTD. IL

Tel Aviv 61570, Israel E-mail: neumo@neumo-vargus.co.il

IN **HEIDENHAIN Optics & Electronics India Private Limited**

Chetpet, Chennai 600 031, India

www.heidenhain.in

IT HEIDENHAIN ITALIANA S.r.I.

20128 Milano, Italy

www.heidenhain.it

.IP

HEIDENHAIN K.K. Tokyo 102-0083, Japan

www.heidenhain.co.jp

HEIDENHAIN Korea LTD. KR

Gasan-Dong, Seoul, Korea 153-782

www.heidenhain.co.kr

HEIDENHAIN CORPORATION MEXICO MX

20235 Aguascalientes, Ags., Mexico E-mail: info@heidenhain.com

MY ISOSERVE SDN. BHD.

43200 Balakong, Selangor E-mail: isoserve@po.jaring.my

HEIDENHAIN NEDERLAND B.V. NL

6716 BM Ede, Netherlands www.heidenhain.nl

NO

HEIDENHAIN Scandinavia AB 7300 Orkanger, Norway www.heidenhain.no

PH Machinebanks' Corporation

Quezon City, Philippines 1113 E-mail: info@machinebanks.com

ы

02-384 Warszawa, Poland www.heidenhain.pl

PT FARRESA ELECTRÓNICA, LDA.

4470 - 177 Maia, Portugal www.farresa.pt

HEIDENHAIN Reprezentanță Romania Brașov, 500407, Romania www.heidenhain.ro RO

RS Serbia → BG

RU **000 HEIDENHAIN**

125315 Moscow, Russia www.heidenhain.ru

HEIDENHAIN Scandinavia AB SE

12739 Skärholmen, Sweden www.heidenhain.se

SG HEIDENHAIN PACIFIC PTE LTD.

Singapore 408593 www.heidenhain.com.sg

KOPRETINATN s.r.o. SK

91101 Trencin, Slovakia www.kopretina.sk

SL NAVO d.o.o.

2000 Maribor, Slovenia www.heidenhain.si

TH HEIDENHAIN (THAILAND) LTD

Bangkok 10250, Thailand www.heidenhain.co.th

T&M Mühendislik San. ve Tic. LTD. ŞTİ. TR

34728 Ümraniye-Istanbul, Turkey www.heidenhain.com.tr

HEIDENHAIN Co., Ltd. TW

Taichung 40768, Taiwan R.O.C.

www.heidenhain.com.tw

Gertner Service GmbH Büro Kiev

UA 01133 Kiev, Ukraine

www.heidenhain.ua

HEIDENHAIN CORPORATION US

Schaumburg, IL 60173-5337, USA www.heidenhain.com

VE Maquinaria Diekmann S.A.

Caracas, 1040-A, Venezuela E-mail: purchase@diekmann.com.ve

VN

AMS Co. Ltd HCM City, Vietnam

E-mail: davidgoh@amsvn.com ZA MAFEMA SALES SERVICES C.C.

Midrand 1685, South Africa www.heidenhain.co.za